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1. Theoretical Results

This is the expanded version of Section 3 from the
main paper that includes complete proofs.

In this section we make the connection between the
performance a K-classifier in the K-space and the per-
formance on the original problem precise. Thus justi-
fying the approach taken in this paper not only intu-
itively, but also from a theoretical standpoint. Specif-
ically, we bound the generalization error of an SVM
that uses the kernel induced by a K-classifier in terms
of the expected hinge loss and the margin of the K-
classifier in the K-space:

Theorem 1.1 Let P be a distribution on X × {±1},
zxx′ and tyy′ be as in Equation ??, h be a K-classifier,
and R be a constant s.t. h(zxx) ≤ R2 ∀x ∈ X . Let

HLh,γ = E((x,y),(x′,y′))∈P×P

t[
1− tyy′h(zxx′)

γ

]
+

|

be the expected K-space hinge loss relative to margin γ
of the K-classifier h. Then, with probability 1 − δ, a
classifier f̂ with generalization error

P(x,y)

r
yf̂(x) ≤ 0

z
≤ HLh,γ +O

(√
R4 ln(1/δ)

γ2n

)

can be learned efficiently from a training sample of n
instances drawn IID from P .

The theorem follows from the two lemmas stated be-
low. The first lemma shows that a K-classifier that has
low expected hinge loss in the K-space will induce a
“good” kernel. The second lemma shows that a good
kernel allows for a classifier with low generalization
error to be efficiently learned from a finite training
sample. The following definition states formally what
we mean by a good kernel (Srebro, 2007).1

Definition A kernel K is an (ε, γ) good kernel in
hinge loss with respect to a distribution P on X×{±1}

1A kernel that does not satisfy this definition is not
necessarily a “bad” kernel. We just can not make any
formal statements with respect to its performance.

if there exist a classifier w ∈ HK with ‖w‖HK = 1 s.t.

E(x,y)

t[
1− y〈w, φ(x)〉

γ

]
+

|

≤ ε

where HK is the Hilbert space and φ(·) is the feature
mapping corresponding to K.

Lemma 1.2 Let P , h, HLh,γ , R be as in Theo-

rem 1.1. Then the K̃h is a (HLh,γ , γ/R) good kernel
in hinge loss with respect to P .

Proof Let w = E(x′,y′)(y
′φ̃(x′)) ∈ HK̃h . We have:

ε = E(x,y),(x′,y′)

t[
1− tyy′hxx′

γ

]
+

|

= E(x,y),(x′,y′)

t[
1− yy′K̃(x, x′)

γ

]
+

|

= E(x,y)

t

E(x′,y′)

t[
1− yy′K̃(x, x′)

γ

]
+

∣∣∣∣(x, y)

||

(Jensen’s inequality)

≥ E(x,y)

u

v

1−
E(x′,y′)

r
yy′〈φ̃(x′), φ̃(x)〉|(x, y)

z

γ


+

}

~

= E(x,y)

t[
1− y〈w/||w||H, φ̃(x)〉

γ/||w||H

]
+

|

To conclude the proof, we bound ‖w‖H by R:

‖w‖2H = E(x,y)

r
yφ̃(x)

z
· E(x′,y′)

r
y′φ̃(x′)

z

= E(x,y),(x′,y′)

r
yy′K̃(x, x′)

z

≤
√
E(x,y),(x′,y′) Jy2y′2K · E(x,y),(x′,y′)

r
K̃2(x, x′)

z

=

√
E(x,y),(x′,y′)

r
K̃2(x, x′)

z
≤ R2

Lemma 1.3 Let K be an (ε, γ) good kernel in hinge
loss, with K(x, x) ≤ R2 ∀x ∈ X . Let (xi, yi)

n
i=1 be an

IID training sample, and f̂(x) = ŵ · φ(x) with

ŵ = arg min
||w||HK≤1

1

n

n∑
i=1

[
1− yiw · φ(xi)

γ

]
+
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be a kernel classifier that minimizes the average hinge
loss relative to γ on the training sample. Then, with
probability at least 1− δ, we have:

P(x,y)

r
yf̂(x) ≤ 0

z
≤ ε+O

(√
R2 ln(1/δ)

γ2n

)

Lemma 1.3 follows directly from Theorem 21 in
(Bartlett & Mendelson, 2002).

Thus, in the case of learning a linear combination of
kernels, with Ki(x, x) ≤ 1, the following generalization
bounds applies:

Corollary 1.4 Let hµ(zxx′) = µ·zxx′ be a K-classifier
with ‖µ‖2 = 1. Then, with probability at least 1− δ, a

classifier f̂ with generalization error

P(x,y)

r
yf̂(x) ≤ 0

z
≤ HLhµ,γ +O

(√
p ln(1/δ)

γ2n

)

can be learned efficiently from a training sample of n
instances drawn IID from P .

Corollary 1.5 Let hµ(zxx′) = µ·zxx′ be a K-classifier
with ‖µ‖1 = 1. Then, with probability at least 1− δ, a

classifier f̂ with generalization error

P(x,y)

r
yf̂(x) ≤ 0

z
≤ HLhµ,γ +O

(√
ln(1/δ)

γ2n

)

can be learned efficiently from a training sample of n
instances drawn IID from P .

Note that, unlike in the one-stage kernel learning case,
the generalization bound in Theorem 1.1 is in terms of
the expected hinge loss of the K-classifier not the train-
ing hinge loss. While we are hopeful a generalization
bound for the classification problem in the K-space can
be obtained, as of now it remains an open problem.

We can, however, prove a concentration bound for the
expected hinge loss of a K-classifier. This is the analog
of the concentration bounds for target alignment in
(Cortes et al., 2010; Cristianini et al., 2001).2

Theorem 1.6 Let P , h, HLh,γ , R be as in Theo-
rem 1.1. Let (xi, yi)

n
i=1 be an IID sample distributed

according to P . Then the following inequality holds

2This is not a regular generalization bound as the K-
classifier is not allowed to depend on the training sample.

with probability at least 1− δ

HLh,γ ≤
2

n(n− 1)

∑
1≤i<j≤n

[
1− tijh(zij)

γ

]
+

+

√√√√2
(

1 + R2

γ

)2
ln 1/δ

n

Proof We will prove the concentration bound using
McDiarmid’s inequality (?). Let

f((x1, y1), · · · , (xn, yn)) =

=
2

n(n− 1)

∑
1≤i<j≤n

[
1− yiyjK̃(xi, xj)

γ

]
+

Let (x′l, y
′
l) be a new sample drawn at random from P .

We have

|f((x1, y1), ..., (xl, yl), ..., (xn, yn))−
− f((x1, y1), ..., (x′l, y

′
l), ..., (xn, yn))| ≤

≤ 2

n(n− 1)

(
l−1∑
i=1

∣∣∣∣∣
[

1− yiylK̃(xi, xl)

γ

]
+

−

−

[
1− yiy

′lK̃(xi, x
′
l)

γ

]
+

∣∣∣∣∣
)

+

+
2

n(n− 1)

(
n∑

i=l+1

∣∣∣∣∣
[

1− ylyiK̃(xl, xi)

γ

]
+

−

[
1− y′lyiK̃(x′l, xi)

γ

]
+

∣∣∣∣∣
)

≤ 2

n

(
1 +

R2

γ

)
Where the last inequality comes from the fact that for
any (x, y) and (x′, y′)

0 ≤

[
1− yy′K̃(x, x′)

γ

]
+

≤ 1 +
R2

γ

Applying McDiarmid’s inequality gives

P JE Jf((x1, y1), · · · , (xn, yn))K−
−f((x1, y1), · · · , (xn, yn)) ≥ ε1K ≤

≤ exp

 −nε21
2
(

1 + R2

γ

)2
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The statement of the theorem is obtained by equating
the right side with δ, and observing that for any i 6= j

E(xi,yi),(xj ,yj)

t[
1− tijh(zij)

γ

]
+

|

=

= E(x,y),(x′,y′)

t[
1− tyy′h(zx,x′)

γ

]
+

|

which implies

E Jf((x1, y1), · · · , (xn, yn))K =

= E(x,y),(x′,y′)

t[
1− tyy′h(zx,x′)

γ

]
+

|
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