A Binary Classification Framework for Two-Stage Multiple Kernel Learning Supplementary Material

1. Theoretical Results

This is the expanded version of Section 3 from the main paper that includes complete proofs.

In this section we make the connection between the performance a K-classifier in the K-space and the performance on the original problem precise. Thus justifying the approach taken in this paper not only intuitively, but also from a theoretical standpoint. Specifically, we bound the generalization error of an SVM that uses the kernel induced by a K-classifier in terms of the expected hinge loss and the margin of the Kclassifier in the K-space:

Theorem 1.1 Let P be a distribution on $\mathcal{X} \times \{\pm 1\}$, $z_{xx'}$ and $t_{yy'}$ be as in Equation ??, h be a K-classifier, and R be a constant s.t. $h(z_{xx}) \leq R^2 \ \forall x \in \mathcal{X}$. Let

$$HL_{h,\gamma} = E_{((x,y),(x',y')) \in P \times P} \left[\left[1 - \frac{t_{yy'}h(z_{xx'})}{\gamma} \right]_+ \right]$$

be the expected K-space hinge loss relative to margin γ of the K-classifier h. Then, with probability $1 - \delta$, a classifier \hat{f} with generalization error

$$P_{(x,y)}\left[\!\left[y\hat{f}(x) \le 0\right]\!\right] \le HL_{h,\gamma} + \mathcal{O}\left(\sqrt{\frac{R^4\ln(1/\delta)}{\gamma^2 n}}\right)$$

can be learned efficiently from a training sample of n instances drawn IID from P.

The theorem follows from the two lemmas stated below. The first lemma shows that a K-classifier that has low expected hinge loss in the K-space will induce a "good" kernel. The second lemma shows that a good kernel allows for a classifier with low generalization error to be efficiently learned from a finite training sample. The following definition states formally what we mean by a good kernel (Srebro, 2007).¹

Definition A kernel K is an (ϵ, γ) good kernel in hinge loss with respect to a distribution P on $\mathcal{X} \times \{\pm 1\}$

if there exist a classifier $w \in \mathcal{H}_K$ with $||w||_{\mathcal{H}_K} = 1$ s.t.

$$E_{(x,y)}\left[\left[1-\frac{y\langle w,\phi(x)\rangle}{\gamma}\right]_{+}\right] \leq \epsilon$$

where \mathcal{H}_K is the Hilbert space and $\phi(\cdot)$ is the feature mapping corresponding to K.

Lemma 1.2 Let P, h, $HL_{h,\gamma}$, R be as in Theorem 1.1. Then the \tilde{K}_h is a $(HL_{h,\gamma}, \gamma/R)$ good kernel in hinge loss with respect to P.

Proof Let
$$w = E_{(x',y')}(y'\phi(x')) \in \mathcal{H}_{\tilde{K}_h}$$
. We have:
 $\epsilon = E_{(x,y),(x',y')} \left[\left[\left[1 - \frac{t_{yy'}h_{xx'}}{\gamma} \right]_+ \right] \right]$
 $= E_{(x,y),(x',y')} \left[\left[\left[1 - \frac{yy'\tilde{K}(x,x')}{\gamma} \right]_+ \right] \right]$
 $= E_{(x,y)} \left[E_{(x',y')} \left[\left[\left[1 - \frac{yy'\tilde{K}(x,x')}{\gamma} \right]_+ \left| (x,y) \right] \right] \right] \right]$
(Jensen's inequality)
 $\geq E_{(x,y)} \left[\left[1 - \frac{E_{(x',y')} \left[yy'\langle \tilde{\phi}(x'), \tilde{\phi}(x) \rangle | (x,y) \right]}{\gamma} \right]_+ \right]$

$$= E_{(x,y)} \left[\left[1 - \frac{y\langle w/||w||_{\mathcal{H}}, \tilde{\phi}(x)\rangle}{\gamma/||w||_{\mathcal{H}}} \right]_{+} \right]$$

To conclude the proof, we bound $||w||_{\mathcal{H}}$ by R:

$$\begin{split} \|w\|_{\mathcal{H}}^{2} &= E_{(x,y)} \left[\!\!\left[y \tilde{\phi}(x) \right]\!\!\right] \cdot E_{(x',y')} \left[\!\!\left[y' \tilde{\phi}(x') \right]\!\!\right] \\ &= E_{(x,y),(x',y')} \left[\!\!\left[yy' \tilde{K}(x,x') \right]\!\!\right] \\ &\leq \sqrt{E_{(x,y),(x',y')} \left[\!\!\left[y^{2} y'^{2} \right]\!\!\right] \cdot E_{(x,y),(x',y')} \left[\!\!\left[\tilde{K}^{2}(x,x') \right]\!\!\right]} \\ &= \sqrt{E_{(x,y),(x',y')} \left[\!\!\left[\tilde{K}^{2}(x,x') \right]\!\!\right]} \leq R^{2} \end{split}$$

Lemma 1.3 Let K be an (ϵ, γ) good kernel in hinge loss, with $K(x, x) \leq R^2 \ \forall x \in \mathcal{X}$. Let $(x_i, y_i)_{i=1}^n$ be an IID training sample, and $\hat{f}(x) = \hat{w} \cdot \phi(x)$ with

$$\hat{w} = \underset{||w||_{\mathcal{H}_K} \le 1}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \left[1 - \frac{y_i w \cdot \phi(x_i)}{\gamma} \right]_{+}$$

¹A kernel that does not satisfy this definition is not necessarily a "bad" kernel. We just can not make any formal statements with respect to its performance.

be a kernel classifier that minimizes the average hinge loss relative to γ on the training sample. Then, with probability at least $1 - \delta$, we have:

$$P_{(x,y)}\left[\!\left[y\hat{f}(x) \leq 0\right]\!\right] \leq \epsilon + \mathcal{O}\left(\sqrt{\frac{R^2\ln(1/\delta)}{\gamma^2 n}}\right)$$

Lemma 1.3 follows directly from Theorem 21 in (Bartlett & Mendelson, 2002).

Thus, in the case of learning a linear combination of kernels, with $K_i(x, x) \leq 1$, the following generalization bounds applies:

Corollary 1.4 Let $h_{\mu}(z_{xx'}) = \mu \cdot z_{xx'}$ be a K-classifier with $\|\mu\|_2 = 1$. Then, with probability at least $1 - \delta$, a classifier \hat{f} with generalization error

$$P_{(x,y)}\left[\!\left[y\hat{f}(x) \le 0\right]\!\right] \le HL_{h_{\mu},\gamma} + \mathcal{O}\left(\sqrt{\frac{p\ln(1/\delta)}{\gamma^2 n}}\right)$$

can be learned efficiently from a training sample of n instances drawn IID from P.

Corollary 1.5 Let $h_{\mu}(z_{xx'}) = \mu \cdot z_{xx'}$ be a K-classifier with $\|\mu\|_1 = 1$. Then, with probability at least $1 - \delta$, a classifier \hat{f} with generalization error

$$P_{(x,y)}\left[\!\left[y\hat{f}(x) \le 0\right]\!\right] \le HL_{h_{\mu},\gamma} + \mathcal{O}\left(\sqrt{\frac{\ln(1/\delta)}{\gamma^2 n}}\right)$$

can be learned efficiently from a training sample of n instances drawn IID from P.

Note that, unlike in the one-stage kernel learning case, the generalization bound in Theorem 1.1 is in terms of the expected hinge loss of the K-classifier not the training hinge loss. While we are hopeful a generalization bound for the classification problem in the K-space can be obtained, as of now it remains an open problem.

We can, however, prove a concentration bound for the expected hinge loss of a K-classifier. This is the analog of the concentration bounds for target alignment in (Cortes et al., 2010; Cristianini et al., 2001).²

Theorem 1.6 Let P, h, $HL_{h,\gamma}$, R be as in Theorem 1.1. Let $(x_i, y_i)_{i=1}^n$ be an IID sample distributed according to P. Then the following inequality holds

with probability at least $1-\delta$

$$HL_{h,\gamma} \leq \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \left[1 - \frac{t_{ij}h(z_{ij})}{\gamma} \right]_{+} + \sqrt{\frac{2\left(1 + \frac{R^2}{\gamma}\right)^2 \ln 1/\delta}{n}}$$

Proof We will prove the concentration bound using McDiarmid's inequality (?). Let

$$f((x_1, y_1), \cdots, (x_n, y_n)) = \\ = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} \left[1 - \frac{y_i y_j \tilde{K}(x_i, x_j)}{\gamma} \right]_+$$

Let (x'_l, y'_l) be a new sample drawn at random from P. We have

$$\begin{aligned} |f((x_1, y_1), ..., (x_l, y_l), ..., (x_n, y_n)) - \\ &- f((x_1, y_1), ..., (x'_l, y'_l), ..., (x_n, y_n))| \leq \\ \leq \frac{2}{n(n-1)} \left(\sum_{i=1}^{l-1} \left| \left[1 - \frac{y_i y_l \tilde{K}(x_i, x_l)}{\gamma} \right]_+ \right| - \\ &- \left[1 - \frac{y_i y' l \tilde{K}(x_i, x'_l)}{\gamma} \right]_+ \right| \right) + \\ &+ \frac{2}{n(n-1)} \left(\sum_{i=l+1}^n \left| \left[1 - \frac{y_l y_i \tilde{K}(x_l, x_i)}{\gamma} \right]_+ \right| - \\ &- \left[1 - \frac{y'_l y_i \tilde{K}(x'_l, x_i)}{\gamma} \right]_+ \right| \right) \\ \leq \frac{2}{n} \left(1 + \frac{R^2}{\gamma} \right) \end{aligned}$$

Where the last inequality comes from the fact that for any (x, y) and (x', y')

$$0 \leq \left[1 - \frac{yy'\tilde{K}(x,x')}{\gamma}\right]_+ \leq 1 + \frac{R^2}{\gamma}$$

Applying McDiarmid's inequality gives

$$P \llbracket E \llbracket f((x_1, y_1), \cdots, (x_n, y_n)) \rrbracket - -f((x_1, y_1), \cdots, (x_n, y_n)) \ge \epsilon_1 \rrbracket \le \\ \le \exp\left(\frac{-n\epsilon_1^2}{2\left(1 + \frac{R^2}{\gamma}\right)^2}\right)$$

 $^{^{2}}$ This is not a regular generalization bound as the Kclassifier is not allowed to depend on the training sample.

The statement of the theorem is obtained by equating the right side with δ , and observing that for any $i \neq j$

$$E_{(x_i,y_i),(x_j,y_j)} \left[\left[\left[1 - \frac{t_{ij}h(z_{ij})}{\gamma} \right]_+ \right] \right] = \\ = E_{(x,y),(x',y')} \left[\left[\left[1 - \frac{t_{yy'}h(z_{x,x'})}{\gamma} \right]_+ \right] \right]$$

which implies

$$E \left[\left[f((x_1, y_1), \cdots, (x_n, y_n)) \right] \right] = \\ = E_{(x,y),(x',y')} \left[\left[\left[1 - \frac{t_{yy'}h(z_{x,x'})}{\gamma} \right]_+ \right] \right]$$

References

- Bartlett, P. and Mendelson, S. Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. *Journal of Machine Learning Research*, 3, 2002.
- Cortes, C., Mohri, M., and Rostamizadeh, A. Two-Stage Learning Kernel Algorithms. In International Conference on Machine Learning, 2010.
- Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and Kandola, J. S. On Kernel-Target Alignment. In *NIPS*, 2001.
- Srebro, N. How Good is a Kernel When Used as a Similarity Measure. In COLT, 2007.