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Abstract

This paper presents a co-regularization based approach to semi-supervised domain adaptation. Our
proposed approach (EA++) builds on the notion of augmented space (introduced in EASYADAPT
(EA) [1]) and harnesses unlabeled data in target domain to further assist the transfer of information
from sourceto target. This semi-supervised approach to domain adaptation is extremely simple to
implement and can be applied as a pre-processing step to any supervised learner. Our theoretical
analysis (in terms of Rademacher complexity) of EA and EA++ show that the hypothesis class of
EA++ has lower complexity (compared to EA) and hence resultsin tighter generalization bounds.
Experimental results on sentiment analysis tasks reinforce our theoretical findings and demonstrate
the efficacy of the proposed method when compared to EA as wellas few other representative
baseline approaches.

1 Introduction

A domain adaptation approach for NLP tasks, termed EASYADAPT (EA), augments thesource domainfeature space
using features from labeled data intarget domain[1]. EA is simple, easy to extend and implement as a preprocessing
step and most importantly is agnostic of the underlying classifier. However, EA requires labeled data in both source
and target, and hence applies to fully supervised domain adaptation settingsonly. In this paper,1 we propose a semi-
supervised2 approach to leverage unlabeled data for EASYADAPT (which we call EA++) and theoretically, as well as
empirically, demonstrate its superior performance over EA.

There exists prior work on supervised domain adaptation (and multi-task learning) that can be related to EASYADAPT.
An algorithm for multi-task learning using shared parameters was proposed for multi-task regularization [3] wherein
each task parameter was represented as sum of a mean parameter (that stays same for all tasks) and its deviation
from this mean. SVMs were used as the base classifiers and the algorithm was formulated in the standard SVM dual
optimization setting. Subsequently, this framework was extended to online multi-domain setting in [4]. Prior work
on semi-supervised approaches to domain adaptation also exists in literature. Extraction of specific features from the
available dataset was proposed [5, 6] to facilitate the taskof domain adaptation. Co-adaptation [7], a combination of
co-training and domain adaptation, can also be considered as a semi-supervised approach to domain adaptation. A
semi-supervised EM algorithm for domain adaptation was proposed in [8]. Similar to graph based semi-supervised
approaches, a label propagation method was proposed [9] to facilitate domain adaptation. Domain Adaptation Ma-
chine (DAM) [10] is a semi-supervised extension of SVMs for domain adaptation and presents extensive empirical
results. Nevertheless, in almost all of the above cases, theproposed methods either use specifics of the datasets or are
customized for some particular base classifier and hence it is not clear how the proposed methods can be extended to
other existing classifiers.

1A preliminary version [2] of this work appeared in the DANLP workshop at ACL 2010.
2We definesupervised domain adaptationas having labeled data in bothsourceandtargetandunsupervised domain adaptation

as having labeled data in onlysource. In semi-supervised domain adaptation, we also have access to both labeled and unlabeled
data intarget.

1



As mentioned earlier, EA is remarkably general in the sense that it can be used as a pre-processing step in conjunction
with any base classifier. However, one of the prime limitations of EA is its incapability to leverage unlabeled data.
Given its simplicity and generality, it would be interesting to extend EA to semi-supervised settings. In this paper, we
propose EA++, a co-regularization based semi-supervised extension to EA. We also present Rademacher complex-
ity based generalization bounds for EA and EA++. Our generalization bounds also apply to the approach proposed
in [3] for domain adaptation setting, where we are only concerned with the error on target domain. The closest to our
work is a recent paper [11] that theoretically analyzes EASYADAPT. Their paper investigates the necessity to com-
binesupervisedandunsuperviseddomain adaptation (which the authors refer to aslabeledandunlabeledadaptation
frameworks, respectively) and analyzes the combination using mistake bounds (which is limited to perceptron-based
online scenarios). In addition, their work points out that EASYADAPT is limited to only supervised domain adaptation.
On the contrary, our work extends EASYADAPT to semi-supervised settings and presents generalization bound based
theoretical analysis which specifically demonstrate why EA++ is better than EA.

2 Background

In this section, we introduce notations and provide a brief overview of EASYADAPT [1].

2.1 Problem Setup and Notations

Let X ⊂ R
d denote the instance space andY = {−1, +1} denote the label space. LetDs(x, y) be the source

distribution andDt(x, y) be the target distribution. We have a set of source labeled examplesLs(∼ Ds(x, y)) and a
set of target labeled examplesLt(∼ Dt(x, y)), where|Ls| = ls ≫ |Lt| = lt. We also have target unlabeled data
denoted byUt(∼ Dt(x)), where|Ut| = ut. Our goal is to learn a hypothesish : X 7→ Y having low expected error
with respect to the target domain. In this paper, we considerlinear hypothesesonly. However, the proposed techniques
extend to non-linear hypotheses, as mentioned in [1]. Source and target empirical errors for hypothesish are denoted
by ǫ̂s(h, fs) and ǫ̂t(h, ft) respectively, wherefs andft are the true source and target labeling functions. Similarly,
the corresponding expected errors are denoted byǫs(h, fs) andǫt(h, ft). We will use shorthand notations ofǫ̂s, ǫ̂t, ǫs

andǫt wherever the intention is clear from context.

2.2 EasyAdapt (EA)

Let us denoteRd as theoriginal space. EA operates in anaugmentedspace denoted by̆X ⊂ R
3d (for a single pair of

source and target domain). Fork domains, theaugmentedspace blows up toR(k+1)d. The augmented feature maps
Φs, Φt : X 7→ X̆ for source and target domains are defined asΦs(x) = 〈x, x, 0〉 andΦt(x) = 〈x, 0, x〉 wherex
and0 are vectors inRd, and0 denotes a zero vector of dimensiond. The firstd-dimensional segment corresponds to
commonality between source and target, the secondd-dimensional segment corresponds to the source domain while
the last segment corresponds to the target domain. Source and target domain examples are transformed using these
feature maps and the augmented features so constructed are passed onto the underlying supervised classifier. One of
the most appealing properties of EASYADAPT is that it is agnostic of the underlying supervised classifier being used to
learn in theaugmentedspace. Almost anystandard supervised learning approach(for e.g., SVMs, perceptrons) can be
used to learn alinear hypothesis̆h ∈ R

3d in the augmented space. Let us denoteh̆ = 〈gc, gs, gt〉, where each ofgc,
gs, gt is of dimensiond, and represent thecommon, source-specificandtarget-specificcomponents of̆h, respectively.
During prediction on target data, the incoming target samplex is transformed to obtainΦt(x) andh̆ is applied on this
transformed sample. This is equivalent to applying(gc + gt) onx. A intuitive insight into why this simple algorithm
works so well in practice and outperforms most state-of-the-art algorithms is given in [1]. Briefly, it can be thought
to be simultaneously training two hypotheses:hs = (gc + gs) for source domain andht = (gc + gt) for target
domain. The commonality between the domains is representedby gc whereasgs andgt capture the idiosyncrasies of
the source and target domain, respectively.

3 EA++: EA using unlabeled data

As discussed in the previous section, the EASYADAPT algorithm is attractive because it performs very well empirically
and can be used in conjunction with any underlying supervised linear classifier. One drawback of EASYADAPT is its
inability to leverage unlabeled target data which is usually available in large quantities in most practical scenarios. In
this section, we extend EA to semi-supervised settings while maintaining the desirable classifier-agnostic property.
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3.1 Motivation

In multi-view approach to semi-supervised learning [12], different hypotheses are learned using differentviewsof
the dataset. Thereafter, unlabeled data is utilized to co-regularize these learned hypotheses by making them agree on
unlabeled samples. In domain adaptation, the source and target data come from two different distributions. However,
if the source and target domains arereasonably close, we can employ a similar form of regularization using unlabeled
data. A prior co-regularization based idea to harness unlabeled data in domain adaptation tasks demonstrated improved
empirical results [10]. However, their technique applies for the particular base classifier they consider and hence does
not extend to other supervised classifiers.

3.2 EA++: EASYADAPT with unlabeled data

In our proposed semi-supervised approach, the source and target hypotheses are made to agree on unlabeled data.
We refer to this algorithm as EA++. Recall that EASYADAPT learns alinear hypothesis̆h ∈ R

3d in theaugmented
space. The hypothesis̆h contains common, source-specific and target-specific sub-hypotheses and is expressed as
h̆ = 〈gc, gs, gt〉. In original space (ref. Section 2.2), this is equivalent to learning a source specific hypothesis
hs = (gc + gs) and a target specific hypothesisht = (gc + gt).

In EA++, we want the source hypothesishs and the target hypothesisht to agree on the unlabeled data. For an
unlabeled target samplexi ∈ Ut ⊂ R

d, the goal of EA++ is to make the predictions ofhs andht on xi, agree with
each other. Formally, it aims to achieve the following condition:

hs · xi ≈ ht · xi ⇐⇒ (gc + gs) · xi ≈ (gc + gt) · xi

⇐⇒ (gs − gt) · xi ≈ 0 ⇐⇒ 〈gc, gs, gt〉 · 〈0, xi, −xi〉 ≈ 0. (3.1)

The above expression leads to the definition of a new feature mapΦu : X 7→ X̆ for unlabeled data given byΦu(x) =
〈0, x, −x〉. Every unlabeled target sample is transformed using the mapΦu(.). The augmented feature space that
results from the application of three feature maps, namely,Φs(·), Φt(·) andΦu(·) on source labeled samples, target
labeled samples and target unlabeled samples is summarizedin Figure 1(a).

As shown in Eq. 3.1, during the training phase, EA++ assigns apredicted value close to0 for each unlabeled sample.
However, it is worth noting that during the test phase, EA++ predicts labels from two classes:+1 and−1. This
warrants further exposition of the implementation specifics which is deferred until the next subsection.
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Figure 1: (a) Diagrammatic representation of feature augmentation in EA and EA++, (b) Loss functions for class+1,
class−1 and their summation.

3.3 Implementation

In this section, we present implementation specific detailsof EA++. For concreteness, we consider SVM as the base
supervised learner. However, these details hold for othersupervised linear classifiers. In the dual form of SVM
optimization function, the labels are multiplied with features. Since, we want the predicted labels for unlabeled data
to be0 (according to Eq. 3.1), multiplication by zero will make theunlabeled samples ineffective in the dual form of
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the cost function. To avoid this, we create as many copies ofΦu(x) as there are labels and assign each label to one
copy ofΦu(x). For the case of binary classification, we create two copies of every augmented unlabeled sample, and
assign+1 label to one copy and−1 to the other. The learner attempts to balance the loss of the two copies, and tries
to make the prediction on unlabeled sample equal to0. Figure 1(b) shows the curves of the hinge loss for class+1,
class−1 and their summation. The effective loss for each unlabeled sample is similar to the sum of losses for+1 and
−1 classes (shown in Figure 1(b)c).

4 Generalization Bounds

In this section, we present Rademacher complexity based generalization bounds for EA and EA++. First, we define
hypothesis classes for EA and EA++ using an alternate formulation. Second, we present a theorem (Theorem 4.1)
which relatesempiricalandexpectederror for the general case and hence applies to both the source and target domains.
Third, we prove Theorem 4.2 which relates theexpected target errorto theexpected source error. Fourth, we present
Theorem 4.3 which combines Theorem 4.1 and Theorem 4.2 so as to relate theexpected target errorto empirical
errors in source and target (which is the main goal of the generalization bounds presented in this paper). Finally, all
that remains is to bound the Rademacher complexity of the various hypothesis classes.

4.1 Define Hypothesis Classes for EA and EA++

Our goal now is to define the hypothesis classes for EA and EA++so as to make the theoretical analysis feasible.
Both EA and EA++ train hypotheses in the augmented spaceX̆ ⊂ R

3d. The augmented hypothesish̆ is trained
using data from both domains, and the three sub-hypotheses (gc + gs + gt) of d-dimension are treated in a different
manner for source and target data. We use an alternate formulation of the hypothesis classes and work in the original
spaceX ⊂ R

d. As discussed briefly in Section 2.2, EA can be thought to be simultaneously training two hypotheses
hs = (gc + gs) andht = (gc + gt) for source and target domains, respectively. We consider the case when the
underlying supervised classifier in augmented space uses a squareL2-norm regularizer of the form||h̆||2 (as used in
SVM). This is equivalent to imposing the regularizer(||gc||2+||gs||2+||gt||2) = (||gc||2+||hs−gc||2+||ht−gc||2).
Differentiating this regularizer w.r.t.gc givesgc = (hs + ht)/3 at the minimum, and the regularizer reduces to
1
3 (||hs||2 + ||ht||2 + ||hs − ht||2). Thus, EA can be thought to be minimizing the sum of empiricalsource error on
hs, empirical target error onht and this regularizer. The cost functionQEA(h1,h2) can now be written as:

αǫ̂s(h1) + (1 − α)ǫ̂t(h2) + λ1||h1||2 + λ2||h2||2 + λ||h1 − h2||2, and (hs,ht) = arg min
h1,h2

QEA (4.1)

The EA algorithm minimizes this cost function overh1 andh2 jointly to obtainhs andht. The EA++ algorithm
uses target unlabeled data, and encourageshs andht to agree on unlabeled samples (Eq. 3.1). This can be thought of
as having an additional regularizer of the form

∑

i∈Ut
(hs(xi) − ht(xi))

2 in the cost function. The cost function for
EA++ (denoted asQ++(h1,h2)) can then be written as:

αǫ̂s(h1) + (1 − α)ǫ̂t(h2) + λ1||h1||2 + λ2||h2||2 + λ||h1 − h2||2 + λu

∑

i∈Ut

(h1(xi) − h2(xi))
2 (4.2)

Both EA and EA++ give equal weights to source and target empirical errors, soα turns out to be0.5. We use
hyperparametersλ1, λ2, λ, andλu in the cost functions to make them more general. However, as explained earlier,
EA implicitly sets all these hyperparameters (λ1, λ2, λ) to the same value (which will be0.5(1

3 ) = 1
6 in our case,

since the weights in the entire cost function are multipliedby α = 0.5). The hyperparameter for unlabeled data (λu)
is 0.5 in EA++. We assume that the lossL(y,h.x) is bounded by1 for the zero hypothesish = 0. This is true for
many popular loss functions including square loss and hingeloss wheny ∈ {−1, +1}. One possible way [13] of
defining the hypotheses classes is to substitute trivial hypothesesh1 = h2 = 0 in both the cost functions which makes
all regularizers and co-regularizers equal to zero and thusbounds the cost functionsQEA andQ++. This gives us
QEA(0,0) ≤ 1 andQ++(0,0) ≤ 1 sinceǫ̂s(0), ǫ̂t(0) ≤ 1. Without loss of generality, we also assume that final
source and target hypotheses can only reduce the cost function as compared to the zero hypotheses. Hence, the final
hypothesis pair(hs,ht) that minimizes the cost functions is contained in the following paired hypothesis classes for
EA and EA++,

H := {(h1,h2) : λ1||h1||2 + λ2||h2||2 + λ||h1 − h2||2 ≤ 1}
H++ := {(h1,h2) : λ1||h1||2 + λ2||h2||2 + λ||h1 − h2||2 + λu

∑

i∈Ut

(h1(xi) − h2(xi))
2 ≤ 1} (4.3)
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The source hypothesis class for EA is the set of allh1 such that the pair(h1, h2) is inH. Similarly, the target hypothesis
class for EA is the set of allh2 such that the pair(h1, h2) is in H. Consequently, the source and target hypothesis
classes for EA can be defined as:

J s
EA := {h1 : X 7→ R, (h1,h2) ∈ H} and J t

EA := {h2 : X 7→ R, (h1,h2) ∈ H} (4.4)

Similarly, the source and target hypothesis classes for EA++ are defined as:

J s
++ := {h1 : X 7→ R, (h1,h2) ∈ H++} and J t

++ := {h2 : X 7→ R, (h1,h2) ∈ H++} (4.5)

Furthermore, we assume that our hypothesis class is comprised of real-valued functions over an RKHS with repro-
ducing kernelk(·, ·), k :X ×X 7→ R. Let us define the kernel matrix and partition it corresponding to source labeled,
target labeled and target unlabeled data as shown below:

K =

(

As×s Cs×t Ds×u

C′
t×s Bt×t Et×u

D′
u×s E′

u×t Fu×u

)

, (4.6)

where ‘s’, ‘t’ and ‘u’ indicate terms corresponding to source labeled, target labeled and target unlabeled, respectively.

4.2 Relate empirical and expected error (for both source andtarget)

Having defined the hypothesis classes, we now proceed to obtain generalization bounds for EA and EA++. We have
the following standard generalization bound based on the Rademacher complexity of a hypothesis class [13].

Theorem 4.1. Suppose the uniform Lipschitz condition holds forL : Y2 → [0, 1], i.e., |L(ŷ1, y) −
L(ŷ2, y)| ≤ M |ŷ1 − ŷ2|, where y, ŷ1, ŷ2 ∈ Y and ŷ1 6= ŷ2. Then for anyδ ∈ (0, 1) and for m samples
(X1, Y1), (X2, Y2), . . . , (Xm, Ym) drawn i.i.d. from distributionD, we have with probability at least(1 − δ) over
random draws of samples,

ǫ(f) ≤ ǫ̂(f) + 2MR̂m(F) +
1√
m

(2 + 3
√

ln(2/δ)/2).

wheref ∈ F is the class of functions mappingX 7→ Y, andR̂m(F) is the empirical Rademacher complexity ofF
defined aŝRm(F) := Eσ[supf∈F | 2

m

∑m

i=1 σih2(xi)|].

If we can bound the complexity of hypothesis classesJ s
EA andJ t

EA, we will have a uniform convergence bound on
the difference of expected and empirical errors (|ǫt(h) − ǫ̂t(h)| and|ǫs(h) − ǫ̂s(h)|) using Theorem 4.1. However, in
domain adaptation setting, we are also interested in the bounds that relate expected target error to total empirical error
on source and target samples. The following sections aim to achieve this goal.

4.3 Relate source expected error and target expected error

The following theorem provides a bound on the difference of expected target error and expected source error. The
bound is in terms ofηs := ǫs(fs, ft), νs := ǫs(h

∗
t , ft) andνt := ǫt(h

∗
t , ft), wherefs andft are the source and target

labeling functions, andh∗
t is the optimal target hypothesis in target hypothesis class. It also usesdH∆H(Ds,Dt)−

distance [14], which is defined assuph1,h2∈H 2|ǫs(h1, h2) − ǫt(h1, h2)|. ThedH∆H−distance measures the distance
between two distribution using a hypothesis class-specificdistance measure. If the two domains are close to each
other,ηs anddH∆H(Ds,Dt) are expected to be small. On the contrary, if the domains are far apart, these terms will
be big and the use of extra source samples may not help in learning a better target hypothesis. These two terms also
represent the notion of adaptability in our case.

Theorem 4.2. Suppose the loss function is M-Lipschitz as defined in Theorem 4.1, and obeys triangle inequality. For
any two source and target hypotheseshs, ht (which belong to different hypotheses classes), we have

ǫt(ht, ft) − ǫs(hs, fs) ≤M ||ht − hs||Es

[

√

k(x, x)
]

+
1

2
dHt∆Ht

(Ds, Dt) + ηs + νs + νt.

whereHt is the target hypothesis class, andk(·, ·) is the reproducing kernel for the RKHS.ηs, νs, andνt are defined
as above.

Proof. Please see Appendix A in the supplement.
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4.4 Relate target expected error with source and target empirical errors

EA and EA++ learn source and target hypotheses jointly. So the empirical error in one domain is expected to have
its effect on the generalization error in the other domain. In this section, we aim to bound the target expected error in
terms of source and target empirical errors. The following theorem achieves this goal.

Theorem 4.3. Under the assumptions and definitions used in Theorem 4.1 andTheorem 4.2, with probability at least
1 − δ we have

ǫt(ht, ft) ≤
1

2
(ǫ̂s(hs, fs) + ǫ̂t(ht, ft)) +

1

2
(2MR̂m(Hs) + 2MR̂m(Ht)) +

1

2

„

1√
ls

+
1√
lt

«

(2 + 3
p

ln(2/δ)/2)

+
1

2
M ||ht − hs||Es

h

p

k(x, x)
i

+
1

4
dHt∆Ht

(Ds, Dt) +
1

2
(ηs + νs + νt)

for anyhs andht. Hs andHt are the source hypothesis class and the target hypothesis class, respectively.

Proof. We first use Theorem 4.1 to bound(ǫt(ht)− ǫ̂t(ht)) and(ǫs(hs)− ǫ̂s(hs)). The above theorem directly follows
by combining these two bounds and Theorem 4.2.

This bound provides better a understanding of how the targetexpected error is governed by both source and target
empirical errors, and hypotheses class complexities. Thisbehavior is expected since both EA and EA++ learn source
and target hypotheses jointly. We also note that the bound inTheorem 4.3 depends on||hs − ht||, which apparently
might give an impression that the best possible thing to do isto make source and target hypotheses equal. However, due
to joint learning of source and target hypotheses (by optimizing the cost function of Eq. 4.1), making the source and
target hypotheses close will increase the source empiricalerror, thus loosening the bound of Theorem 4.3. Noticing
that ||hs − ht||2 ≤ 1

λ
for both EA and EA++, the bound can be made independent of||hs − ht|| although with a

sacrifice on the tightness. We note that Theorem 4.1 can also be used to bound the target generalization error of EA
and EA++ in terms of only target empirical error. However, ifthe number of labeled target samples is extremely
low, this bound can be loose due to inverse dependency on number of target samples. Theorem 4.3 bounds the target
expected error using the averages of empirical errors, Rademacher complexities, and sample dependent terms. If the
domains are reasonably close and the number of labeled source samples is much higher than target samples, this can
provide a tighter bound compared to Theorem 4.1.

Finally, we need the Rademacher complexities of source and target hypothesis classes (for both EA and EA++) to be
able to use Theorem 4.3, which are provided in the next sections.

4.5 Bound the Complexity of EA and EA++ Hypothesis Classes

The following theorems bound the Rademacher complexity of the target hypothesis classes for EA and EA++.

4.5.1 EASYADAPT (EA)

Theorem 4.4. For the hypothesis classJ t
EA defined in Eq. 4.4 we have,14√2

2Ct

EA

lt
≤ R̂m(J t

EA) ≤ 2Ct

EA

lt
where,

R̂m(J t
EA) = Eσ suph2∈J t

EA

|
∑

i σih2(x)|, (Ct
EA)2 =

(

1

λ2+
“

1
λ1

+ 1
λ

”

−1

)

tr(B) andB is the kernel sub-matrix de-

fined as in Eq. 4.6.

Proof. Please see Appendix B in the supplement.

The complexity of target class decreases with an increase inthe values of hyperparameters. It decreases more rapidly
with change inλ2 compared toλ andλ1, which is also expected sinceλ2 is the hyperparameter directly influencing
the target hypothesis. The kernel block sub-matrix corresponding to source samples does not appear in the bound.
This result in conjunction with Theorem 4.1 gives a bound on the target generalization error.

To be able to use the bound of Theorem 4.3, we need the Rademacher complexity of the source hypothesis class.
Due to the symmetry of paired hypothesis class (Eq. 4.3) inh1 and h2 up to scalar parameters, the complex-
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ity of source hypothesis class can be similarly bounded by1
4
√

2

2Cs

EA

ls
≤ R̂m(J s

EA) ≤ 2Cs

EA

ls
, where(Cs

EA)2 =
(

1

λ1+
“

1
λ2

+ 1
λ

”

−1

)

tr(A), andA is the kernel block sub-matrix corresponding to source samples.

4.5.2 EASYADAPT++ (EA++)

Theorem 4.5. For the hypothesis classJ t
++ defined in Eq. 4.5 we have,14√2

2Ct

++

lt
≤ R̂m(J t

++) ≤
2Ct

++

lt
where, R̂m(J t

++) = Eσ suph2∈J t

++
|
∑

i σih2(x)| and (Ct
++)2 =

(

1

λ2+
“

1
λ1

+ 1
λ

”

−1

)

tr(B) −

λu

(

λ1

λλ1+λλ2+λ1λ2

)2

tr
(

E(I + kF )−1E′), wherek = λu(λ1+λ2)
λλ1+λλ2+λ1λ2

.

Proof. Please see Appendix C in the Supplement.

The second term in(Ct
++)2 is always positive since the trace of a positive definite matrix is positive. So, the unlabeled

data results in a reduction of complexity over the labeled data case (Theorem 4.4). Thetrace term in the reduction
can also be written as

∑

i ||Ei||2(I+kF )−1 , whereEi is thei’th column of matrixE and|| · ||2Z is the norm induced by a
positive definite matrixZ. SinceEi is the vector representing the inner product ofi’th target sample with all unlabeled
samples, this means that the reduction in complexity is proportional to thesimilarity between target unlabeled samples
and target labeled samples. This result in conjunction withTheorem 4.1 gives a bound on the target generalization
error in terms of target empirical error.

To be able to use the bound of Theorem 4.3, we need the Rademacher complexity of source hypothesis class too.
Again, as in case of EA, using the symmetry of paired hypothesis classH++ (Eq. 4.3) inh1 andh2 up to scalar

parameters, the complexity of source hypothesis class can be similarly bounded by1
4
√

2

2Cs

++

ls
≤ R̂m(J s

++) ≤ 2Cs

++

ls
,

where(Cs
++)2 =

(

1

λ1+
“

1
λ2

+ 1
λ

”

−1

)

tr(A) − λu

(

λ2

λλ1+λλ2+λ1λ2

)2

tr
(

D(I + kF )−1D′), andk is defined similarly

as in Theorem 4.5. Thetrace term can again be interpreted as before, which implies that the reduction in source class
complexity is proportional to thesimilarity between source labeled samples and target unlabeled samples.

5 Experiments

We follow experimental setups similar to [1] but report our empirical results for the task of sentiment classification
using the SENTIMENT data provided by [15]. The task of sentiment classification is a binary classification task which
corresponds to classifying a review as positive or negativefor user reviews of eight product types (apparel, books,
DVD, electronics, kitchen, music, video, and other) collected fromamazon.com. We quantify the domain divergences
in terms of theA-distance [16] which is computed [17] from finite samples of source and target domain using the
proxyA-distance [16]. For our experiments, we consider the following domain-pairs: (a) DVD→BOOKS (proxy
A-distance=0.7616) and, (b) KITCHEN→APPAREL (proxy A-distance=0.0459). As in [1], we use an averaged
perceptron classifier from the Megam framework (implementation due to [18]) for all the aforementioned tasks. The
training sample size varies from1k to 16k. In all cases, the amount of unlabeled target data is equal tothe total amount
of labeled source and target data.

We compare the empirical performance of EA++ with a few otherbaselines, namely, (a) SOURCEONLY (classifier
trained on source labeled samples), (b) TARGETONLY -FULL (classifier trained on the same number of target labeled
samples as the number of source labeled samples in SOURCEONLY ), (c) TARGETONLY (classifier trained on small
amount of target labeled samples, roughly one-tenth of the amount of source labeled samples in SOURCEONLY ), (d)
ALL (classifier trained on combined labeled samples of SOURCEONLY and TARGETONLY ), (e) EA (classifier trained
in augmented feature spaceon the same input training set as ALL ), (f) EA++ (classifier trained inaugmented feature
spaceon the same input training set as EA and an equal amount of unlabeledtargetdata). All these approaches were
tested on the entire amount of availabletarget test data.

Figure 2 presents the learning curves for (a) SOURCEONLY , (b) TARGETONLY -FULL , (c) TARGETONLY , (d) ALL ,
(e) EA, and (f) EA++ (EA with unlabeled data). The x-axis represents the number of training samples on which the

7



0.2

0.3

2000 5000 8000 11000

er
ro

r 
ra

te

number of samples

SrcOnly
TgtOnly-Full

TgtOnly
All
EA

EA++

(a)

0.2

0.3

0.4

1000 2500 4000 6500

er
ro

r 
ra

te

number of samples

SrcOnly
TgtOnly-Full

TgtOnly
All
EA

EA++

(b)

Figure 2: Test accuracy of SOURCEONLY , TARGETONLY -FULL , TARGETONLY , ALL , EA, EA++ (with unlabeled
data) for, (a) DVD→BOOKS (proxyA-distance=0.7616), (b) KITCHEN→APPAREL (proxyA-distance=0.0459)

predictor has been trained. At this point, we note that the number of training samples vary depending on the partic-
ular approach being used. For SOURCEONLY , TARGETONLY -FULL and TARGETONLY , it is just the corresponding
number of labeled source or target samples, respectively. For ALL and EA, it is the summation of labeled source and
target samples. For EA++, thex-value plotted denotes the amount of unlabeled target data used (in addition to an
equal amount of source+target labeled data, as in ALL or EA). We plot this number for EA++, just to compare its
improvement over EA when using an additional (and equal) amount of unlabeled target data. This accounts for the
differentx values plotted for the different curves. In all cases, the y-axis denotes the error rate.

As can be seen, for both the cases, EA++ outperforms EASYADAPT. For DVD→BOOKS, the domains are far apart
as denoted by a highproxyA-distance. Hence, TARGETONLY -FULL achieves the best performance and EA++ almost
catches up for large amounts of training data. For differentnumber of sample points, EA++ gives relative improve-
ments in the range of4.36%− 9.14%, as compared to EA. The domains KITCHEN and APPAREL can be considered
to be reasonably close due to their low domain divergence. Hence, this domain pair is more amenable for domain adap-
tation as is demonstrated by the fact that the other approaches (SOURCEONLY , TARGETONLY , ALL ) perform better
or atleast as good as TARGETONLY -FULL . However, as earlier, EA++ once again outperforms all theseapproaches
including TARGETONLY -FULL . Due to the closeness of the two domains, additional unlabeled data in EA++ helps
it in outperforming TARGETONLY -FULL . At this point, we also note that EA performs poorly for some cases, which
corroborates with prior experimental results [1]. For thisdataset, EA++ yields relative improvements in the range of
14.08% − 39.29% over EA for different number of sample points experimented with. Similar trends were observed
for other tasks and datasets (refer Figure 3 of [2]).

6 Conclusions

We proposed a semi-supervised extension to an existing domain adaptation technique (EA). Our approach EA++,
leverages unlabeled data to improve the performance of EA. With this extension, EA++ applies to bothfully supervised
andsemi-superviseddomain adaptation settings. We have formulated EA and EA++ in terms of co-regularization, an
idea that originated in the context of multiview learning [13, 19]. Our proposed formulation also bears resemblance to
existing work [20] in multiview semi-supervised (SSL) literature which has been studied extensively in [21, 22, 23].
The difference being, while inmultiview SSLone would try to make the different hypotheses learned from different
views agree on unlabeled data, insemi-supervised domain adaptationthe aim is to make the different hypotheses
learned from different distributions agree on unlabeled data. Using our formulation, we have presented theoretical
analysis of the superior performance of EA++ as compared to EA. Our empirical results further confirm the theoretical
findings. EA++ can also be extended to the multiple source settings. If we havek sources and a single target domain
then we can introduce a co-regularizer for each source-target pair. Due to space constraints, we defer details to a full
version.
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