Supplement for the paper titled "Co-regularization Based Semi-supervised Domain Adaptation"

Hal Daumé III
Department of Computer Science
University of Maryland CP, MD, USA
hal@umiacs.umd.edu

Abhishek Kumar
Department of Computer Science
University of Maryland CP, MD, USA
abhishek@umiacs.umd.edu

Avishek Saha
School Of Computing
University of Utah, UT, USA
avishek@cs.utah.edu

In the following, we provide proofs for Theorem 4.2, Theorem 4.4 and Theorem 4.5. Note that the derivations and proofs make use of the kernel sub-matrices A, B, C, D, E, F (as defined in Eq. 4.6 of the original paper).

1 Proof of Theorem 4.2

Let h_{s}^{*} and h_{t}^{*} be the optimal source and target hypotheses in \mathcal{H}_{s} and \mathcal{H}_{t} respectively. Using triangle inequality for the loss function, we have

$$
\epsilon_{t}\left(h_{t}, f_{t}\right) \leq \epsilon_{t}\left(h_{t}, h_{t}^{*}\right)+\epsilon_{t}\left(h_{t}^{*}, f_{t}\right)
$$

We use the notion of $d_{\mathcal{H} \Delta \mathcal{H}}$-distance in the next step, which is defined as $\sup _{h_{1}, h_{2} \in \mathcal{H}} 2\left|\epsilon_{s}\left(h_{1}, h_{2}\right)-\epsilon_{t}\left(h_{1}, h_{2}\right)\right|[1]$. This gives us

$$
\epsilon_{t}\left(h_{t}, f_{t}\right) \leq \epsilon_{s}\left(h_{t}, h_{t}^{*}\right)+\frac{1}{2} d_{\mathcal{H}_{t} \Delta \mathcal{H}_{t}}\left(D_{s}, D_{t}\right)+\epsilon_{t}\left(h_{t}^{*}, f_{t}\right)
$$

We make use of triangle inequality again to get

$$
\epsilon_{t}\left(h_{t}, f_{t}\right) \leq \epsilon_{s}\left(h_{t}, f_{s}\right)+\epsilon_{s}\left(f_{s}, f_{t}\right)+\epsilon_{s}\left(h_{t}^{*}, f_{t}\right)+\frac{1}{2} d_{\mathcal{H}_{t} \Delta \mathcal{H}_{t}}\left(D_{s}, D_{t}\right)+\epsilon_{t}\left(h_{t}^{*}, f_{t}\right)
$$

We denote $\eta_{s}:=\epsilon_{s}\left(f_{s}, f_{t}\right), \nu_{s}:=\epsilon_{s}\left(h_{t}^{*}, f_{t}\right)$, and $\nu_{t}:=\epsilon_{t}\left(h_{t}^{*}, f_{t}\right)$. Subtracting $\epsilon_{s}\left(h_{s}, f_{s}\right)$ from both sides, we get

$$
\begin{aligned}
\epsilon_{t}\left(h_{t}, f_{t}\right)-\epsilon_{s}\left(h_{s}, f_{s}\right) & \leq\left(\epsilon_{s}\left(h_{t}, f_{s}\right)-\epsilon_{s}\left(h_{s}, f_{s}\right)\right)+\frac{1}{2} d_{\mathcal{H}_{t} \Delta \mathcal{H}_{t}}\left(D_{s}, D_{t}\right)+\eta_{s}+\nu_{s}+\nu_{t} \\
& \leq M E_{s}\left[h_{t}(x)-h_{s}(x)\right]+\frac{1}{2} d_{\mathcal{H}_{t} \Delta \mathcal{H}_{t}}\left(D_{s}, D_{t}\right)+\eta_{s}+\nu_{s}+\nu_{t}
\end{aligned}
$$

(using M-Lipschitz property of loss function)
$=M E_{s}\left[\left\langle h_{t}, k(x, \cdot)\right\rangle-\left\langle h_{s}, k(x, \cdot)\right\rangle\right]+\frac{1}{2} d_{\mathcal{H}_{t} \Delta \mathcal{H}_{t}}\left(D_{s}, D_{t}\right)+\eta_{s}+\nu_{s}+\nu_{t}$
(using the reproducing kernel property)

$$
\begin{aligned}
& =M E_{s}\left[\left\langle h_{t}-h_{s}, k(x, \cdot)\right\rangle\right]+\frac{1}{2} d_{\mathcal{H}_{t} \Delta \mathcal{H}_{t}}\left(D_{s}, D_{t}\right)+\eta_{s}+\nu_{s}+\nu_{t} \\
& \leq M\left\|h_{t}-h_{s}\right\| E_{s}[\|k(x, \cdot)\|]+\frac{1}{2} d_{\mathcal{H}_{t} \Delta \mathcal{H}_{t}}\left(D_{s}, D_{t}\right)+\eta_{s}+\nu_{s}+\nu_{t} \\
& =M\left\|h_{t}-h_{s}\right\| E_{s}[\sqrt{k(x, x)}]+\frac{1}{2} d_{\mathcal{H}_{t} \Delta \mathcal{H}_{t}}\left(D_{s}, D_{t}\right)+\eta_{s}+\nu_{s}+\nu_{t}
\end{aligned}
$$

(Note: Some of the steps involving reduction to the term $E_{s}[\sqrt{k(x, x)}]$ are similar to [2].)

2 Proof of Theorem 4.4: Complexity for EA

In this section, we bound the complexity of target hypothesis class $\mathcal{J}_{E A}^{t}$ for EA. The base hypothesis class \mathcal{H} in Eq. 4.3 (of the original paper) is symmetric in source and target hypotheses. So the complexity of source class $\mathcal{J}_{E A}^{s}$ can be obtained by replacing adequate terms. We are interested in the complexity of the target hypothesis class $\mathcal{J}_{E A}^{t}$ which is defined as $\mathcal{J}_{E A}^{t}:=\left\{h_{2}: \mathcal{X} \mapsto \mathbb{R},\left(h_{1}, h_{2}\right) \in \mathcal{H}\right\}$, where h_{1} is not fixed a priori.
The Rademacher complexity of $\mathcal{J}_{E A}^{t}$ is defined as

$$
\begin{equation*}
\hat{R}_{n}\left(\mathcal{J}_{E A}^{t}\right)=E_{\sigma}\left[\sup _{\left(h_{1}, h_{2}\right) \in \mathcal{H}}\left|\frac{2}{l_{t}} \sum_{i=1}^{l_{t}} \sigma_{i} h_{2}\left(x_{i}\right)\right|\right] \tag{2.1}
\end{equation*}
$$

The basic framework of proof is similar to the proof of the main theorem of [3]. The hypothesis class considered in their work is different than ours. They find the complexity of average hypothesis class (i.e., $\left.x \mapsto\left(h_{1}(x)+h_{2}(x)\right) / 2\right)$, while we are interested in class $\mathcal{J}_{E A}^{t}$, as defined above. We also note that $h_{2} \in \mathcal{J}_{E A}^{t} \Longrightarrow-h_{2} \in \mathcal{J}_{E A}^{t}$ since $\left(h_{1}, h_{2}\right) \in \mathcal{H} \Longrightarrow\left(-h_{1},-h_{2}\right) \in \mathcal{H}$. This means that we can remove the absolute value sign from Eq. 2.1. Since, $\forall i, h_{2}\left(x_{i}\right)=\left\langle k\left(x_{i}, \cdot\right), h_{2}\right\rangle$, we can restrict the supremum to h_{1} and h_{2} that are in the span of all samples and also in \mathcal{H}. The restricted condition on $\left(h_{1}, h_{2}\right)$ then becomes

$$
\left\{\left(h_{\alpha}, h_{\beta}\right): \lambda_{1} \alpha^{\prime} K \alpha+\lambda_{2} \beta^{\prime} K \beta+\lambda(\alpha-\beta)^{\prime} K(\alpha-\beta) \leq 1\right\}=\left\{\left(h_{\alpha}, h_{\beta}\right):\left(\alpha^{\prime} \beta^{\prime}\right) M\left(\alpha^{\prime} \beta^{\prime}\right)^{\prime} \leq 1\right\}
$$

where

$$
M=\left(\begin{array}{cc}
\left(\lambda_{1}+\lambda\right) K & -\lambda K \\
-\lambda K & \left(\lambda_{2}+\lambda\right) K
\end{array}\right)
$$

and K is the kernel matrix for source labeled and target labeled samples. Using the reproducing kernel property, we get

$$
\hat{R}_{n}\left(\mathcal{J}_{E A}^{t}\right)=\frac{2}{l_{t}} E_{\sigma} \sup _{\alpha, \beta \in \mathbb{R}_{s}+l_{t}}\left\{\sigma^{\prime}\left(C^{\prime} B\right) \beta:\left(\alpha^{\prime} \beta^{\prime}\right) M\left(\alpha^{\prime} \beta^{\prime}\right)^{\prime} \leq 1\right\} .
$$

For a symmetric positive definite matrix M, it can be shown that

$$
\begin{equation*}
\sup _{(\alpha, \beta):\left(\alpha^{\prime}\right.}^{\left.\beta^{\prime}\right) M\left(\alpha^{\prime} \beta^{\prime}\right)^{\prime} \leq 1} x^{\prime} \beta=\left\|\left(M / M_{11}\right)^{-1 / 2} x\right\|=\left\|\left(M^{-1}\right)_{22}^{1 / 2} x\right\|, \tag{2.2}
\end{equation*}
$$

and the maxima occurs at $\alpha=-M_{11}^{-1} M_{12} \beta . M / M_{11}$ is the Schur complement of block M_{11} of matrix M (i.e. $\left.M / M_{11}=M_{22}-M_{21} M_{11}^{-1} M_{12}\right)$.
The matrix M may not always be full rank, however it can be noted that if β is in the null space of $K,\left(C^{\prime} B\right) \beta$ will be zero. So, we can project β onto the column space of K (or row space due to K being a symmetric matrix) to get $\beta_{p r}$ and the term $\left(C^{\prime} B\right) \beta_{p r}$ is equal to $\left(C^{\prime} B\right) \beta$. Specifically, $\beta_{p r}$ can be thought as computed by the operation $U U_{p r}^{T} \beta$ where U is the full eigenvector matrix and $U_{p r}$ is the eigenvector matrix consisting of only the vectors having nonzero eigenvalues. So, the sup is restricted to the projected $\alpha_{p r}$ and $\beta_{p r}$, and the expression for Rademacher complexity can be rewritten as

$$
\hat{R}_{n}\left(\mathcal{J}_{E A}^{t}\right)=\frac{2}{l_{t}} E_{\sigma} \sup _{\alpha_{p r}, \beta_{p r} \in \operatorname{ColSpace}\{K\}}\left\{\sigma^{\prime}\left(C^{\prime} B\right) \beta_{p r}:\left(\alpha_{p r}^{\prime} \beta_{p r}^{\prime}\right) M\left(\alpha_{p r}^{\prime} \beta_{p r}^{\prime}\right)^{\prime} \leq 1\right\} .
$$

We proceed in a manner similar to that used in [3] and diagonalize the kernel matrix K to get orthonormal bases U corresponding the nonzero eigenvalues $\left(K=U^{\prime} \Lambda U\right)$. Λ is a diagonal matrix of size $r \times r$, containing just the nonzero eigenvalues and r is the rank of matrix K. Since $\alpha_{p r}$ and $\beta_{p r}$ are in the span of column space of K, there exist a_{s} and b such that

$$
\alpha_{p r}=U a \quad \text { and } \quad \beta_{p r}=U b
$$

The expression for complexity now becomes, $\hat{R}_{n}\left(\mathcal{J}_{E A}^{t}\right)=\frac{2}{l_{t}} E_{\sigma} \sup \left\{\sigma^{\prime} W b:\left(a^{\prime} b^{\prime}\right) P\left(a^{\prime} b^{\prime}\right)^{\prime} \leq 1\right\}$ where $W=$ $\left(C^{\prime} B\right) U$ and

$$
P=\left(\begin{array}{cc}
\left(\lambda_{1}+\lambda\right) \Lambda & -\lambda \Lambda \\
-\lambda \Lambda & \left(\lambda_{2}+\lambda\right) \Lambda
\end{array}\right)
$$

Using Eq. 2.2, the supremum can be evaluated as

$$
\hat{R}_{n}\left(\mathcal{J}_{E A}^{t}\right)=\frac{2}{l_{t}} E_{\sigma}\left\|\left(P^{-1 / 2}\right)_{22} W^{\prime} \sigma\right\| .
$$

We now make use of Kahane-Khintchine inequality [4] which is stated in the following lemma.
Lemma 2.1. For any vectors $a_{1}, a_{2}, \ldots, a_{n}$ and independent Rademacher random variables $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$, we have

$$
\frac{1}{\sqrt{2}} E\left\|\sigma_{i=1}^{n} \sigma_{i} a_{i}\right\|^{2} \leq\left(E\left\|\sigma_{i=1}^{n} \sigma_{i} a_{i}\right\|\right)^{2} \leq E\left\|\sigma_{i=1}^{n} \sigma_{i} a_{i}\right\|^{2}
$$

Using the above inequality we get a lower and upper bound on the complexity as

$$
\begin{equation*}
\frac{2 C_{E A}^{t}}{2^{1 / 4} l_{t}} \leq \hat{R}_{n}\left(\mathcal{J}_{E A}^{t}\right) \leq \frac{2 C_{E A}^{t}}{l_{t}}, \tag{2.3}
\end{equation*}
$$

where

$$
\begin{align*}
\left(C_{E A}^{t}\right)^{2} & =E_{\sigma}\left\|\left(P^{-1}\right)_{22}^{1 / 2} W^{\prime} \sigma\right\|^{2} \\
& =E_{\sigma}\left(\sigma^{\prime} W\left(P^{-1}\right)_{22} W^{\prime} \sigma\right) \tag{2.4}\\
& =E_{\sigma} \operatorname{tr}\left\{\sigma \sigma^{\prime} W\left(P^{-1}\right)_{22} W^{\prime}\right\} \\
& =\operatorname{tr}\left\{W\left(P^{-1}\right)_{22} W^{\prime}\right\} .
\end{align*}
$$

The above expression can be written in terms of original kernel sub-matrices by doing algebraic manipulations on the eigenbases using similar steps as in [3]. We finally get the result

$$
\left(C_{E A}^{t}\right)^{2}=\frac{1}{\lambda_{2}}\left(\frac{1}{1+\frac{1}{\frac{\lambda_{2}}{\lambda_{1}}+\frac{\lambda_{2}}{\lambda}}}\right) \operatorname{tr}(B) .
$$

Plugging it into Eq. 2.3 gives the desired bounds on the Rademacher complexity of the EA target hypothesis class.

3 Proof of Theorem 4.5: Complexity for EA++

In this section, we bound the complexity of the target hypothesis class \mathcal{J}_{++}^{s} for EA++. The base hypothesis class \mathcal{H}_{++}in Eq. 4.3 (of the original paper) in source and target hypotheses. So the complexity of source class \mathcal{J}_{++}^{s} can be obtained by replacing adequate terms. We are interested in the complexity of the hypothesis class \mathcal{J}_{++}^{t} which is defined as $\mathcal{J}_{++}^{t}:=\left\{h_{2}: \mathcal{X} \mapsto \mathbb{R},\left(h_{1}, h_{2}\right) \in \mathcal{H}_{++}\right\}$, where h_{1} is not fixed a priori.

The Rademacher complexity of \mathcal{J}_{++}^{t} is defined as

$$
\begin{equation*}
\hat{R}_{n}\left(\mathcal{J}_{++}^{t}\right)=E_{\sigma}\left[\sup _{\left(h_{1}, h_{2}\right) \in \mathcal{H}_{++}}\left|\frac{2}{l_{t}} \sum_{i=1}^{l_{t}} \sigma_{i} h_{2}\left(x_{i}\right)\right|\right] \tag{3.1}
\end{equation*}
$$

We proceed similar to the complexity proof of EA given in previous section. Note that $h_{2} \in \mathcal{J}_{++}^{t} \Longrightarrow-h_{2} \in \mathcal{J}_{++}^{t}$ since $\left(h_{1}, h_{2}\right) \in \mathcal{H}_{++} \Longrightarrow\left(-h_{1},-h_{2}\right) \in \mathcal{H}_{++}$. This means that we can remove the absolute value sign from Eq. 3.1. Since, $\forall i, h_{2}\left(x_{i}\right)=\left\langle k\left(x_{i}, \cdot\right), h_{2}\right\rangle$, we can restrict the supremum to h_{1} and h_{2} that are in the span of all samples and also in \mathcal{H}_{++}. The restricted condition on $\left(h_{1}, h_{2}\right)$ then becomes

$$
\begin{aligned}
& \left\{\left(h_{\alpha}, h_{\beta}\right): \lambda_{1} \alpha^{\prime} K \alpha+\lambda_{2} \beta^{\prime} K \beta+\lambda(\alpha-\beta)^{\prime} K(\alpha-\beta)+\lambda_{u}(\alpha-\beta)^{\prime} M(\alpha-\beta) \leq 1\right\} \\
& =\left\{\left(h_{\alpha}, h_{\beta}\right):\left(\alpha^{\prime} \beta^{\prime}\right) N\left(\alpha^{\prime} \beta^{\prime}\right)^{\prime} \leq 1\right\}
\end{aligned}
$$

where

$$
M=\left(\begin{array}{c}
D \\
E \\
F
\end{array}\right)\left(\begin{array}{lll}
D^{\prime} & E^{\prime} & F^{\prime}
\end{array}\right),
$$

$$
N=\left(\begin{array}{cc}
\left(\lambda_{1}+\lambda\right) K & -\lambda K \\
-\lambda K & \left(\lambda_{2}+\lambda\right) K
\end{array}\right)+\lambda_{u}\left(\begin{array}{cc}
M & -M \\
-M & M
\end{array}\right)
$$

and K is the kernel matrix for source labeled, target labeled and target unlabeled samples. Using the reproducing kernel property, we get

$$
\hat{R}_{n}\left(\mathcal{J}_{++}^{t}\right)=\frac{2}{l_{t}} E_{\sigma} \sup _{(\alpha, \beta) \in \mathbb{R}^{l_{s}+l_{t}+l_{u}}}\left\{\sigma^{\prime}\left(C^{\prime} B E\right) \beta:\left(\alpha^{\prime} \beta^{\prime}\right) N\left(\alpha^{\prime} \beta^{\prime}\right)^{\prime} \leq 1\right\}
$$

Using Eq. 2.2, the supremum in the above equation becomes $\left\|\left(N^{-1}\right)_{22}^{1 / 2}\left(C^{\prime} B E\right)^{\prime} \sigma\right\|$.
If the matrix N is not full rank, we can project β and α onto the column space of K without changing the supremum (as it is done in the previous proof). So, the sup is restricted to the projected $\alpha_{p r}$ and $\beta_{p r}$, and the expression for Rademacher complexity can be rewritten as

$$
\hat{R}_{n}\left(\mathcal{J}_{++}^{t}\right)=\frac{2}{l_{t}} E_{\sigma} \sup _{\alpha_{p r}, \beta_{p r} \in \operatorname{ColSpace}\{K\}}\left\{\sigma^{\prime}\left(C^{\prime} B E\right) \beta_{p r}:\left(\alpha_{p r}^{\prime} \beta_{p r}^{\prime}\right) N\left(\alpha_{p r}^{\prime} \beta_{p r}^{\prime}\right)^{\prime} \leq 1\right\}
$$

We proceed in a manner similar to the previous proof and diagonalize the kernel matrix K to get orthonormal bases U corresponding the nonzero eigenvalues $\left(K=U^{\prime} \Lambda U\right)$. Λ is a diagonal matrix of size $r \times r$, containing just the nonzero eigenvalues and r is the rank of matrix K. Since $\alpha_{p r}$ and $\beta_{p r}$ are in the span of column space of K, there exist a_{s} and b such that $\alpha_{p r}=U a, \beta_{p r}=U b$.
The expression for complexity now becomes,

$$
\hat{R}_{n}\left(\mathcal{J}_{++}^{t}\right)=\frac{2}{l_{t}} E_{\sigma} \sup \left\{\sigma^{\prime} W b:\left(a^{\prime} b^{\prime}\right) P\left(a^{\prime} b^{\prime}\right)^{\prime} \leq 1\right\}
$$

where $W=\left(C^{\prime} B E\right) U$ and

$$
P=\left(\begin{array}{cc}
\left(\lambda_{1}+\lambda\right) \Lambda & -\lambda \Lambda \\
-\lambda \Lambda & \left(\lambda_{2}+\lambda\right) \Lambda
\end{array}\right)+\lambda_{u}\left(\begin{array}{cc}
V^{\prime} & 0 \\
0 & V^{\prime}
\end{array}\right)\left(\begin{array}{cc}
M & -M \\
-M & M
\end{array}\right)\left(\begin{array}{cc}
V & 0 \\
0 & V
\end{array}\right)
$$

The solution to the above maximization problem is given by $\left\|\left(P^{-1}\right)_{22}^{1 / 2} W^{\prime} \sigma\right\|$. Using Kahane-Khintchine inequality and taking similar steps as in Eq. 2.4, we get the following result:

$$
\begin{equation*}
\frac{2 C_{++}^{t}}{2^{1 / 4} l_{t}} \leq \hat{R}_{n}\left(\mathcal{J}_{++}^{t}\right) \leq \frac{2 C_{++}^{t}}{l_{t}} \tag{3.2}
\end{equation*}
$$

where $\left(C_{++}^{t}\right)^{2}=\operatorname{tr}\left\{W\left(P^{-1}\right)_{22} W^{\prime}\right\}$.
Let T be the first term in the above expression for P. The second term can be written as $R R^{\prime}$ where

$$
R=\left(\begin{array}{cc}
V^{\prime} & 0 \\
0 & V^{\prime}
\end{array}\right)\left(\begin{array}{c}
D \\
E \\
F \\
D \\
E \\
F
\end{array}\right)
$$

Using the matrix inversion lemma, we have $\left(T+\lambda_{u} R R^{\prime}\right)^{-1}=T^{-1}-\lambda_{u} T^{-1} R\left(I+\lambda_{u} R^{\prime} T^{-1} R\right)^{-1} R^{\prime} T^{-1}$. The term $\operatorname{tr}\left\{W\left(T^{-1}\right)_{22} W^{\prime}\right\}$ evaluates to the same expression as the complexity of EA in previous proof. The second term can also be reduced in terms of original kernel sub-matrices by performing algebraic manipulations on eigenbases using similar steps as used in [3]. We finally get the result

$$
\left(C_{++}^{t}\right)^{2}=\left(\frac{1}{\lambda_{2}+\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda}\right)^{-1}}\right) \operatorname{tr}(B)-\lambda_{u}\left(\frac{\lambda_{1}}{\lambda \lambda_{1}+\lambda \lambda_{2}+\lambda_{1} \lambda_{2}}\right)^{2} \operatorname{tr}\left(E(I+k F)^{-1} E^{\prime}\right)
$$

where $k=\frac{\lambda_{u}\left(\lambda_{1}+\lambda_{2}\right)}{\lambda \lambda_{1}+\lambda \lambda_{2}+\lambda_{1} \lambda_{2}}$. Plugging it into Eq. 3.2 gives the desired bounds on the Rademacher complexity of EA++ target hypothesis class.

References

[1] John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman. Learning bounds for domain adaptation. In NIPS'07, pages 129-136, Vancouver, B.C., December 2007.
[2] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds and algorithms. In COLT'09, Montreal, Quebec, June 2009.
[3] D. S. Rosenberg and P. L. Bartlett. The Rademacher complexity of co-regularized kernel classes. In AISTATS'07, pages 396-403, San Juan, Puerto Rico, March 2007.
[4] Rafal Latala and Krzysztof Oleszkiewicz. On the best constant in the Khinchin-Kahane inequality. Studia Mathematica, 109:101-104, 1994.

