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In the following, we provide proofs for Theorem 4.2, Theorem4.4 and Theorem 4.5. Note that the derivations and
proofs make use of the kernel sub-matricesA, B, C, D, E, F (as defined in Eq. 4.6 of the original paper).

1 Proof of Theorem 4.2

Let h∗
s andh∗

t be the optimal source and target hypotheses inHs andHt respectively. Using triangle inequality for the
loss function, we have

ǫt(ht, ft) ≤ ǫt(ht, h
∗
t ) + ǫt(h

∗
t , ft).

We use the notion ofdH∆H-distance in the next step, which is defined assuph1,h2∈H 2|ǫs(h1, h2) − ǫt(h1, h2)| [1].
This gives us

ǫt(ht, ft) ≤ ǫs(ht, h
∗
t ) +

1

2
dHt∆Ht

(Ds, Dt) + ǫt(h
∗
t , ft).

We make use of triangle inequality again to get

ǫt(ht, ft) ≤ ǫs(ht, fs) + ǫs(fs, ft) + ǫs(h
∗
t , ft) +

1

2
dHt∆Ht

(Ds, Dt) + ǫt(h
∗
t , ft).

We denoteηs := ǫs(fs, ft), νs := ǫs(h
∗
t , ft), andνt := ǫt(h

∗
t , ft). Subtractingǫs(hs, fs) from both sides, we get

ǫt(ht, ft) − ǫs(hs, fs) ≤ (ǫs(ht, fs) − ǫs(hs, fs)) +
1

2
dHt∆Ht

(Ds, Dt) + ηs + νs + νt

≤ MEs[ht(x) − hs(x)] +
1

2
dHt∆Ht

(Ds, Dt) + ηs + νs + νt

(using M-Lipschitz property of loss function)

= MEs[〈ht, k(x, ·)〉 − 〈hs, k(x, ·)〉] +
1

2
dHt∆Ht

(Ds, Dt) + ηs + νs + νt

(using the reproducing kernel property)

= MEs[〈ht − hs, k(x, ·)〉] +
1

2
dHt∆Ht

(Ds, Dt) + ηs + νs + νt

≤ M ||ht − hs||Es[||k(x, ·)||] +
1

2
dHt∆Ht

(Ds, Dt) + ηs + νs + νt

= M ||ht − hs||Es[
√

k(x, x)] +
1

2
dHt∆Ht

(Ds, Dt) + ηs + νs + νt.

(Note: Some of the steps involving reduction to the termEs

[

√

k(x, x)
]

are similar to [2].)
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2 Proof of Theorem 4.4: Complexity for EA

In this section, we bound the complexity of target hypothesis classJ t
EA for EA. The base hypothesis classH in Eq. 4.3

(of the original paper) is symmetric in source and target hypotheses. So the complexity of source classJ s
EA can be

obtained by replacing adequate terms. We are interested in the complexity of the target hypothesis classJ t
EA which

is defined asJ t
EA := {h2 : X 7→ R, (h1, h2) ∈ H}, whereh1 is not fixed a priori.

The Rademacher complexity ofJ t
EA is defined as

R̂n(J t
EA) = Eσ

[

sup
(h1,h2)∈H

∣

∣

∣

∣

∣

2

lt

lt
∑

i=1

σih2(xi)

∣

∣

∣

∣

∣

]

(2.1)

The basic framework of proof is similar to the proof of the main theorem of [3]. The hypothesis class considered in
their work is different than ours. They find the complexity ofaverage hypothesis class (i.e.,x 7→ (h1(x) + h2(x))/2),
while we are interested in classJ t

EA, as defined above. We also note thath2 ∈ J t
EA =⇒ −h2 ∈ J t

EA since
(h1, h2) ∈ H =⇒ (−h1,−h2) ∈ H. This means that we can remove the absolute value sign from Eq. 2.1. Since,
∀i, h2(xi) = 〈k(xi, ·), h2〉, we can restrict the supremum toh1 andh2 that are in the span of all samples and also in
H. The restricted condition on(h1, h2) then becomes

{(hα, hβ) : λ1α
′Kα + λ2β

′Kβ + λ(α − β)′K(α − β) ≤ 1} = {(hα, hβ) : (α′ β′)M(α′ β′)′ ≤ 1}
where

M =

(

(λ1 + λ)K −λK
−λK (λ2 + λ)K

)

,

andK is the kernel matrix for source labeled and target labeled samples. Using the reproducing kernel property, we
get

R̂n(J t
EA) =

2

lt
Eσ sup

α,β∈Rls+lt

{σ′(C′B)β : (α′ β′)M(α′ β′)′ ≤ 1} .

For a symmetric positive definite matrix M, it can be shown that

sup
(α,β):(α′ β′)M(α′ β′)′≤1

x′β = ||(M/M11)
−1/2x|| = ||(M−1)

1/2
22 x||, (2.2)

and the maxima occurs atα = −M−1
11 M12β. M/M11 is the Schur complement of blockM11 of matrix M (i.e.

M/M11 = M22 − M21M
−1
11 M12).

The matrixM may not always be full rank, however it can be noted that ifβ is in the null space ofK, (C′ B)β will be
zero. So, we can projectβ onto the column space ofK (or row space due toK being a symmetric matrix) to getβpr

and the term(C′ B)βpr is equal to(C′ B)β. Specifically,βpr can be thought as computed by the operationUUT
prβ

whereU is the full eigenvector matrix andUpr is the eigenvector matrix consisting of only the vectors having nonzero
eigenvalues. So, thesup is restricted to the projectedαpr andβpr, and the expression for Rademacher complexity can
be rewritten as

R̂n(J t
EA) =

2

lt
Eσ sup

αpr,βpr∈ColSpace{K}

{

σ′(C′ B)βpr : (α′
prβ

′
pr)M(α′

prβ
′
pr)

′ ≤ 1
}

.

We proceed in a manner similar to that used in [3] and diagonalize the kernel matrixK to get orthonormal basesU
corresponding the nonzero eigenvalues (K = U ′ΛU ). Λ is a diagonal matrix of sizer× r, containing just the nonzero
eigenvalues andr is the rank of matrixK. Sinceαpr andβpr are in the span of column space ofK, there existas and
b such that

αpr = Ua and βpr = Ub

The expression for complexity now becomes,R̂n(J t
EA) = 2

lt
Eσ sup {σ′Wb : (a′ b′)P (a′ b′)′ ≤ 1} whereW =

(C′ B)U and

P =

(

(λ1 + λ)Λ −λΛ
−λΛ (λ2 + λ)Λ

)
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Using Eq. 2.2, the supremum can be evaluated as

R̂n(J t
EA) =

2

lt
Eσ||(P−1/2)22W

′σ||.

We now make use of Kahane-Khintchine inequality [4] which isstated in the following lemma.

Lemma 2.1. For any vectors a1, a2, . . . , an and independent Rademacher random variables σ1, σ2, . . . , σn, we have

1√
2
E ‖σn

i=1σiai‖2 ≤ (E ‖σn
i=1σiai‖)2 ≤ E ‖σn

i=1σiai‖2

Using the above inequality we get a lower and upper bound on the complexity as

2Ct
EA

21/4lt
≤ R̂n(J t

EA) ≤ 2Ct
EA

lt
, (2.3)

where
(

Ct
EA

)2
= Eσ||(P−1)

1/2
22 W ′σ||2

= Eσ

(

σ′W (P−1)22W
′σ
)

= Eσtr{σσ′W (P−1)22W
′}

= tr{W (P−1)22W
′}.

(2.4)

The above expression can be written in terms of original kernel sub-matrices by doing algebraic manipulations on the
eigenbases using similar steps as in [3]. We finally get the result

(

Ct
EA

)2
=

1

λ2

(

1

1 + 1
λ2
λ1

+
λ2
λ

.

)

tr(B).

Plugging it into Eq. 2.3 gives the desired bounds on the Rademacher complexity of the EA target hypothesis class.

3 Proof of Theorem 4.5: Complexity for EA++

In this section, we bound the complexity of the target hypothesis classJ s
++ for EA++. The base hypothesis class

H++ in Eq. 4.3 (of the original paper) in source and target hypotheses. So the complexity of source classJ s
++ can

be obtained by replacing adequate terms. We are interested in the complexity of the hypothesis classJ t
++ which is

defined asJ t
++ := {h2 : X 7→ R, (h1, h2) ∈ H++}, whereh1 is not fixed a priori.

The Rademacher complexity ofJ t
++ is defined as

R̂n(J t
++) = Eσ

[

sup
(h1,h2)∈H++

∣

∣

∣

∣

∣

2

lt

lt
∑

i=1

σih2(xi)

∣

∣

∣

∣

∣

]

(3.1)

We proceed similar to the complexity proof of EA given in previous section. Note thath2 ∈ J t
++ =⇒ −h2 ∈ J t

++
since(h1, h2) ∈ H++ =⇒ (−h1,−h2) ∈ H++. This means that we can remove the absolute value sign from Eq. 3.1.
Since,∀i, h2(xi) = 〈k(xi, ·), h2〉, we can restrict the supremum toh1 andh2 that are in the span of all samples and
also inH++. The restricted condition on(h1, h2) then becomes

{(hα, hβ) : λ1α
′Kα + λ2β

′Kβ + λ(α − β)′K(α − β) + λu(α − β)′M(α − β) ≤ 1}
= {(hα, hβ) : (α′ β′)N(α′ β′)′ ≤ 1}

where

M =

(

D
E
F

)

( D′ E′ F ′ ) ,
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N =

(

(λ1 + λ)K −λK
−λK (λ2 + λ)K

)

+ λu

(

M −M
−M M

)

,

andK is the kernel matrix for source labeled, target labeled and target unlabeled samples. Using the reproducing
kernel property, we get

R̂n(J t
++) =

2

lt
Eσ sup

(α,β)∈Rls+lt+lu

{σ′(C′ B E)β : (α′ β′)N(α′ β′)′ ≤ 1} .

Using Eq. 2.2, the supremum in the above equation becomes||(N−1)
1/2
22 (C′ B E)′σ||.

If the matrixN is not full rank, we can projectβ andα onto the column space ofK without changing the supremum
(as it is done in the previous proof). So, thesup is restricted to the projectedαpr andβpr, and the expression for
Rademacher complexity can be rewritten as

R̂n(J t
++) =

2

lt
Eσ sup

αpr,βpr∈ColSpace{K}

{

σ′(C′ B E)βpr : (α′
prβ

′
pr)N(α′

prβ
′
pr)

′ ≤ 1
}

.

We proceed in a manner similar to the previous proof and diagonalize the kernel matrixK to get orthonormal basesU
corresponding the nonzero eigenvalues (K = U ′ΛU ). Λ is a diagonal matrix of sizer× r, containing just the nonzero
eigenvalues andr is the rank of matrixK. Sinceαpr andβpr are in the span of column space ofK, there existas and
b such thatαpr = Ua, βpr = Ub.

The expression for complexity now becomes,

R̂n(J t
++) =

2

lt
Eσ sup {σ′Wb : (a′ b′)P (a′ b′)′ ≤ 1}

whereW = (C′ B E)U and

P =

(

(λ1 + λ)Λ −λΛ
−λΛ (λ2 + λ)Λ

)

+ λu

(

V ′ 0
0 V ′

)(

M −M
−M M

)(

V 0
0 V

)

The solution to the above maximization problem is given by||(P−1)
1/2
22 W ′σ||. Using Kahane-Khintchine inequality

and taking similar steps as in Eq. 2.4, we get the following result:

2Ct
++

21/4lt
≤ R̂n(J t

++) ≤ 2Ct
++

lt
, (3.2)

where
(

Ct
++

)2
= tr{W (P−1)22W

′}.

Let T be the first term in the above expression forP . The second term can be written asRR′ where

R =

(

V ′ 0
0 V ′

)















D
E
F
D
E
F















Using the matrix inversion lemma, we have(T +λuRR′)−1 = T−1−λuT−1R(I +λuR′T−1R)−1R′T−1. The term
tr{W (T−1)22W

′} evaluates to the same expression as the complexity of EA in previous proof. The second term can
also be reduced in terms of original kernel sub-matrices by performing algebraic manipulations on eigenbases using
similar steps as used in [3]. We finally get the result

(

Ct
++

)2
=

(

1

λ2 +
(

1
λ1

+ 1
λ

)−1

)

tr(B) − λu

(

λ1

λλ1 + λλ2 + λ1λ2

)2

tr
(

E(I + kF )−1E′
)

,

wherek = λu(λ1+λ2)
λλ1+λλ2+λ1λ2

. Plugging it into Eq. 3.2 gives the desired bounds on the Rademacher complexity of EA++
target hypothesis class.
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