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Abstract

In the paradigm of multi-task learning, mul-
tiple related prediction tasks are learned
jointly, sharing information across the tasks.
We propose a framework for multi-task learn-
ing that enables one to selectively share the
information across the tasks. We assume that
each task parameter vector is a linear com-
bination of a finite number of underlying ba-
sis tasks. The coefficients of the linear com-
bination are sparse in nature and the over-
lap in the sparsity patterns of two tasks con-
trols the amount of sharing across these. Our
model is based on the assumption that task
parameters within a group lie in a low dimen-
sional subspace but allows the tasks in differ-
ent groups to overlap with each other in one
or more bases. Experimental results on four
datasets show that our approach outperforms
competing methods.

1. Introduction

Multi-task learning is concerned with simultaneously
learning multiple prediction tasks that are related to
one another (Caruana, 1997; Thrun & Pratt, 1998).
The hope is that common information relevant to pre-
diction can be shared among these tasks and learning
them jointly can result in better generalization per-
formance than independently learning each task. The
key aspect in all multi-task learning methods is the
introduction of an inductive bias in the joint hypoth-
esis space of all tasks that reflects our prior beliefs
about task relatedness structure. Assumptions that
task parameters lie close to each other in some ge-
ometric sense (Evgeniou & Pontil, 2004), or parame-
ters share a common prior (Yu et al., 2005; Lee et al.,
2007; Daumé III, 2009), or they lie in a low dimen-
sional subspace (Argyriou et al., 2008a) or on a mani-
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fold (Agarwal et al., 2010) are some examples of intro-
ducing an inductive bias in the hope of achieving better
generalization. A major challenge in multi-task learn-
ing is how to selectively screen the sharing of informa-
tion so that unrelated tasks do not end up influencing
each other. Sharing information between two unre-
lated tasks can worsen the performance of both tasks.
This phenomenon is also known as negative transfer.
In this paper, we propose a structured prior on the
tasks’ weight matrix (whose columns are parameter
vectors for individual prediction tasks) that allows for-
mation of groups of related tasks with partial overlap
among the groups. Two tasks can have full, partial
or no overlap, which is determined by number of basis
tasks they share. We use the term task to refer to the
actual prediction problem. We will use the term task

weight or parameter vector to refer to the parameters
of the model learned from training data.

A starting point for our method is the assumption
that task parameters lie in a low dimensional sub-
space (Argyriou et al., 2008a). This is achieved by
imposing a trace-norm constraint on the task weight
matrix. However, the low rank assumption does not
differentiate between the tasks and assumes that all
tasks are related, which may adversely affect the per-
formance when there are unrelated tasks in the pool,
or some tasks have more in common than others. One
way to address this problem is to assume that there are
disjoint groups of tasks. Examples of such approaches
are (Jacob et al., 2008; Xue et al., 2007) where tasks
are assumed to be clustered and parameters of tasks
within a cluster lie close to each other in ℓ2 norm sense.
Our proposed method does not regularize based on the
ℓ2 distance between task parameters which can fail
to take advantage of negative correlation between the
tasks. For example, grouping on the basis of ℓ2 dis-
tance can put two tasks with parameters w and −w in
separate clusters and block the sharing of information
between them while there is clearly a relation between
the tasks, i.e., the span of these two parameter vec-
tors is one dimensional sub-space instead of being a
two dimensional space. An inductive bias that regu-
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larizes based on the subspace assumption could have
exploited the task relatedness of this sort. We do not
assume disjoint groups and allow partial overlap be-
tween them.

Recently, task grouping in the subspace based regular-
ization framework was proposed in (Kang et al., 2011).
Tasks are assumed to form disjoint groups and the
tasks within each group are assumed to lie in a low di-
mensional subspace. The parameters of tasks and the
group assignment matrix are both learned using alter-
nating style optimization that converges to a local min-
imum. However, the subspaces shared by each group
do not have any overlap between them, which may not
always reflect the true sharing structure since there is
often a continuum in the sharing between tasks. One
pair of tasks may have more in common than another
task pair and we may not be able to take full advan-
tage of multi-task learning by putting the two tasks in
the second pair in different groups.

In our model, we assume that task parameters within
a group lie in a low dimensional subspace, and allow
two tasks from different groups to overlap by having
one or more bases in common. This is achieved by as-
suming that there exist a small number of latent basis
tasks and parameter vector of every observed task is a
linear combination of these. If the columns of L denote
the parameter vectors of k latent tasks, we model the
parameter vector wt of observed task t as wt = Lst,
where st contain the coefficients of the linear combi-
nation. However, each linear combination is assumed
to be sparse in the latent bases and the overlap in the
sparsity patterns of any two tasks controls the amount
of sharing between these. The low dimensional sub-
space assumption of (Argyriou et al., 2008a) can also
be thought of having a small number of latent basis
tasks, however each observed task is determined by a
full linear combination of these bases and there is no
notion of task groups. To be more clear about the dif-
ference, if there are k latent tasks and we pick r(≤ k)
observed tasks arbitrarily, the corresponding weight
matrix of these tasks will be of rank r in the model
of (Argyriou et al., 2008a). On the other hand, our
model allows this matrix to be of rank less than r by
imposing sparse structure on the linear combination
weights. We validate our approach empirically with
two synthetic and four real-world datasets and observe
that our method either outperforms or performs as well
as the relevant baseline methods of (Kang et al., 2011;
Argyriou et al., 2008a).

2. Related Work

Several methods have been proposed in the literature
for the problem of multi-task learning. Most meth-

ods work on the assumption that all tasks are re-
lated (Evgeniou & Pontil, 2004; Ando & Zhang, 2005;
Argyriou et al., 2008a; Rai & Daumé III, 2010). This
assumption can be violated in many real applications
and can degrade the performance. To avoid this, sev-
eral methods have been proposed to allow for grouping
of the tasks using different notions of grouping. Some
methods assume that tasks can be grouped in clusters
and parameters of tasks within a cluster are either
close to each other in some distance metric or share
a common probabilistic prior (Bakker & Heskes, 2003;
Jacob et al., 2008; Xue et al., 2007; Zhou et al., 2011).
Tasks in different clusters do not interact with one an-
other. However, these methods might fail to take ad-
vantage of negatively correlated tasks since they can
put these in different clusters. A similar idea was used
in (Thrun & O’Sullivan), where two tasks are taken to
be similar if one’s parameters improve performance on
the other task.

Other methods assume that there is one group of re-
lated tasks and a small number of outlier tasks that
are not related to any task in the pool (Yu et al.,
2007; Chen et al., 2011). There also exist probabilis-
tic models which attempt to learn full task covariance
matrix and use it in learning of predictor functions
(Zhang & Yeung, 2010b;a; Zhang & Schneider, 2010;
Archambeau et al., 2011). These methods place a ma-
trix variate prior on the task matrix W.

Another common assumption is that task parameters
lie in a low dimensional subspace that captures the
predictive structure for all the tasks (Argyriou et al.,
2008a; Liu et al., 2009). These methods assume that
some of features (either in original space, or in a trans-
formed space) are inactive for all tasks. This forces all
task parameters to lie in a low dimensional subspace.
In (Jalali et al., 2010), this model was refined and fea-
tures are assumed to be either active for all tasks, or
inactive for most of the tasks. This is done by forcing
W to be sum of a group sparse matrix and a sparse
matrix, hence predictors no longer lie in a low dimen-
sional subspace.

There exist a few methods that incorporate group-
ing structure in the subspace based regulariza-
tion (Argyriou et al., 2008b; Kang et al., 2011).
In (Argyriou et al., 2008b), tasks in each group share a
common linear transformation for feature extraction.
It is shown to be equivalent to minimizing the trace-
norm of each groups’ weight sub-matrix. The objec-
tive is non-convex and it is optimized using stochastic
gradient descent. Very similar in spirit is the work
of (Kang et al., 2011), where tasks within a group
are assumed to lie in a low dimensional subspace
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and they minimize the square of trace-norm of each
group’s weight sub-matrix (instead of trace-norm as
in (Argyriou et al., 2008b)). The non-convex objec-
tive is optimized using mixed integer programming.
Both these methods assume that groups are disjoint
and tasks are either related (within a group) or totally
unrelated (in different groups). This is in contrast to
the approach proposed in this paper, where the low
dimensional subspace shared by group members is not
exclusive to it, and two tasks from different groups are
allowed to overlap in one or more bases. Intuitively,
this means that some of the latent basis tasks influence
more than one group. Recently, (Passos et al., 2012)
posited a mixture of sparse factor analyzers structure
on the collection of the task weight vectors. Their
model assumes that the tasks form clusters and tasks
within each cluster are a sparse combination of a task
dictionary specific to that cluster. A nonparametric
Bayesian approach is used to learn the number of clus-
ters and the task dictionary sizes from the data. The
task clusters do not have overlap in task dictionary
elements.

3. Learning Task Grouping and Overlap

In this Section, we describe our approach for model-
ing task grouping and overlap. We call the proposed
approach as GO-MTL for Grouping and Overlap in
Multi-Task Learning. Suppose we have T tasks and
Zt = {(xti, yti) : i = 1, 2, . . . , Nt} be the training set
for each task t = 1, 2, . . . , T . Let wt represent the
weight vector for task indexed by t. These task weight
vectors are stacked as columns of a matrix W, which
is of size d× T , with d being the feature dimension.

We assume there are k(< T ) latent basis tasks and
each observed task can be represented as linear com-
bination of a subset of these basis tasks. This as-
sumption enables us to write the weight matrix W as
W = LS, where L is a matrix of size d× k with each
column representing a latent task, and S is a matrix of
size k×T containing the weights of linear combination
for each task. The predictor wt for task t is given by
Lst, where st is t’th column of matrix S. We assume
the matrix S to be sparse to enforce that each observed
task is obtained from only a few of the latent tasks,
indexed by the non-zero pattern of the corresponding
column of matrix S. The predictive structure of the
tasks is captured by the matrix L and the grouping
structure is determined by matrix S. For two columns
st1 and st2 of matrix S corresponding to tasks t1 and
t2, the overlap between the sparsity patterns deter-
mines the number of basis tasks they have in common.
Tasks that have same sparsity pattern can be seen as
belonging to same group, while tasks whose sparsity

patterns are orthogonal to each other can be seen as
belonging to different groups. The partial sharing of
bases allows us to do away with the concept of dis-
joint groups, and allows to model tasks which are not
as much related as they are with tasks in their own
group but which still have something in common. The
task that does not share bases with any other task in
the pool can be seen as outlier task.

If st denotes the sparsity pattern for task t, our learn-
ing cost function takes the following form:

∑

t

∑

(xti,yti)∈Zt

L (yti, s
′

tL
′xti) + µ||S||1 + λ||L||2F , (1)

where L(·, ·) is the empirical loss function, || · ||1
is entry-wise ℓ1 norm of the matrix and ||L||F =
(tr(LL′))1/2 is the Frobenius norm of matrix L. The
parameter µ controls the sparsity in S. The penalty
on the Frobenius norm of L regularizes the predictor
weights to have low ℓ2 norm and avoids overfitting.

For a convex empirical loss function, the cost function
in Eq. 1 is convex in L for a fixed S, and is convex in
S for a fixed L, however, it is not jointly convex. We
adopt alternating optimization strategy that converges
to a local minimum. For a fixed L, the optimization
function can be decomposed in individual problems for
st as

st = argmin
s

∑

(xti,yti)∈Zt

L (yti, s
′L′xti) + µ||s||1, (2)

We use two-metric projection method to opti-
mize Eq. 2, which has superlinear convergence
(Schmidt et al., 2007; Gafni & Bertsekas, 1984). For
a fixed S, the optimization problem reduces to follow-
ing:

min
L

T
∑

t=1

∑

(xti,yti)∈Zt

L (yti, s
′

tL
′xti) + λ||L||2F . (3)

This problem is convex in L and has a closed form solu-
tion for squared loss function, which is commonly used
in regression problems. For classification problems, we
use logistic loss and optimize it using Newton-Raphson
method, which is commonly used to estimate logis-
tic regression parameters and is the basis of iterative
reweighted least squares algorithm (IRLS) algorithm
for logistic regression (Green, 1984). We also experi-
mented with steepest gradient descent and found it to
work reasonable well on all datasets that we tried.

Algorithm 1 outlines the steps and initialization pro-
cedure for our approach. We adopt the following strat-
egy for initializing L. The individual task parameters
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Algorithm 1 GO-MTL: Grouping and Overlap for
Multi-Task Learning

Input:
Zt: Labeled training data for all tasks
k: Number of latent tasks
µ: Parameter for controlling sparsity
Output: Task predictor matrix W, L and S.
1: Learn individual predictors for each task using
only its own data.
2: Let W0 be the matrix that contains these initial
predictors as columns.
3: Compute top-k singular vectors: W0 = UΣVT

4: Initialize L to first k columns of U.
while not converged do
for t = 1 to T do
5: Solve Eq. 2 to obtain st.

end for
6: Construct matrix S = [s1s2 . . . sT ].
7: Save the previous L: Lold = L.
8: Fix S and solve Eq. 3 to obtain L.

end while
9: Return outputs: L = Lold, S and W = LoldS.

are learned independently using their own data with-
out any sharing, which are then stacked as columns
in a weight matrix W0. The matrix L is then initial-
ized to the top-k left singular vectors of W0. These
are the directions that capture maximum variance of
task parameters in a k-dimensional space. This ini-
tialization strategy was observed to be effective in all
our experiments. The alternating optimization proce-
dure is terminated when there is little change in L or
S between two consecutive iterations.

The parameter k determines the number of latent
tasks, which is taken to be less than total number of
tasks T . The amount of inductive bias depends on this
number. In this respect, it is similar to the “number
of groups” parameter, G, in (Kang et al., 2011). If k
is very low, it may shrink the hypothesis space too
much. On the other hand, if k is very high, the tasks
are not forced to share information with each other.
When we increased the value of k in the experiments
starting from 1, the prediction accuracy improves in
the beginning. After a certain value of k, the per-
formance becomes stable and the possible decrease in
performance due to large k can be controlled by in-
creasing the sparsity penalty µ. More details on this
behavior are provided in Sec. 4.

It is possible to have an alternative formulation to
Eq. 1 where we can do away with parameter k (i.e.,
make it equal to T ), and instead enforce a low rank
penalty on matrix L, weighted by a parameter α. This

can be done by penalizing the nuclear norm of L, which
is the tightest convex lower bound on the rank func-
tion in the unit ball of matrices (i.e., matrices with
spectral norm less than one). However, there are two
disadvantages to this approach: (a) this convex surro-
gate is not always guaranteed to produce a low rank
solution, and (b) this will result in a non-smooth opti-
mization problem for L due to non-smoothness of the
nuclear norm.

3.1. Regression: Squared Loss

Here, we give details about optimization of the cost
function of Eq. 1 for squared loss L(a, b) = (a − b)2,
commonly used in regression problems. Let us denote
yt to be a column vector of length Nt that contains
all the labels for task t. Similarly, let Xt be the data
matrix of size d × Nt containing all the samples for
task t stacked as columns. The cost function of Eq.1
can be written as,

min
L,S

T
∑

t=1

1

Nt
||yt −X′

tLst||
2 + µ||S||1 + λ||L||2F , (4)

For a fixed L, we need the gradient and Hessian of
the squared loss function f(st) =

1
Nt

||yt −X′

tLst||
2 to

optimize for st using two-metric projection method.
These are given as ∇stf(st) = 2

Nt

L′Xt(X
′

tLst − yt),

and ∇2
stf(st) =

2
Nt

L′XtX
′

tL. For a fixed S, equating
the gradient of Eq. 4 to zero gives

T
∑

t=1

1

Nt
Xtyts

′

t =

T
∑

t=1

1

Nt
XtX

′

tLsts
′

t + λL

This is a linear equation in L. To solve this, we ap-
ply vectorization operator on both sides, which simply
stacks all columns of a matrix one above another and
forms a long vector. Clearly, this is a linear operator
and can pass through the summation, and we obtain

T
∑

t=1

1

Nt
vec (Xtyts

′

t) = vec

(

T
∑

t=1

1

Nt
XtX

′

tLsts
′

t + λL

)

=

[

T
∑

t=1

1

Nt
(sts

′

t)⊗ (XtX
′

t) + λI

]

vec(L),

where we have used a property of Kronecker product
that vec(AXB) = (B′ ⊗ A)vec(X). This is in stan-
dard form of system of linear equations that is full
rank and has a unique solution. It can be solved using
LU decomposition or by iterative methods, which are
much faster and numerically more stable then solving
it using matrix inverse.

3.2. Classification: Logistic Loss

We use logistic regression for classification problems,
although the proposed method is not tied to any par-
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ticular loss function. Here, we give details about opti-
mizing Eq. 1 for logistic loss function, which is given as
L(y, f(x)) = log(1+ exp(−yf(x))), where y ∈ {−1, 1}
is the true label. Let us denote the logistic function
by σ(x) = 1/(1 + e−x). For a fixed L, we need the
gradient and Hessian of the loss function w.r.t. st to
solve using two-metric projection method, which are
given by

f(st) =
1

Nt

Nt
∑

i=1

log(1 + exp (−ytis
′

tL
′xti))

∇stf(st) =
−1

Nt

Nt
∑

i=1

(

1 + yti
2

− σ(w′

txti)

)

L′xti

∇2
stf(st) =

1

Nt

Nt
∑

i=1

σ(w′

txti)(1− σ(w′

txti))L
′xtix

′

tiL

where wt = Lst is the weight vector for task t. For
a fixed S, the objective is again convex in L and we
give both gradient update and Newton-Raphson up-
date here.

∇L : −

T
∑

t=1

1

Nt

Nt
∑

i=1

(

1 + yti
2

− σ(w′

txti)

)

xtis
′

t + 2λL

For Newton-Raphson update, we use Taylor series ex-
pansion up to second order around L, making use of
directional first and second derivatives. The step di-
rection M is obtained by solving the following system
of linear equations:
t

T
∑

t=1

1

Nt

Nt
∑

i=1

δti [vec(xtis
′

t)⊗ vec(xtis
′

t)
′] + 2λI

|

vec(M)

= vec

(

T
∑

t=1

1

Nt

Nt
∑

i=1

(

1 + yti
2

− σ(w′

txti)

)

xtis
′

t − 2λL

)

where δti = σ(w′

txti)(1 − σ(w′

txti)). The Newton-
Raphson update is then carried out by taking a step in
this direction. The step size is computed using Armijo
rule.

Newton-Raphson updates, although more costly to
compute, can converge in a smaller number of iter-
ations. Gradient updates also seemed to work reason-
ably well in the experiments. This can be considerably
faster than Newton-Raphson, especially for large prob-
lems, since Newton-Raphson involves solving a system
of linear equations of size dk multiple times for every
iteration of L.

4. Experiments

We perform extensive empirical evaluation of our ap-
proach to gauge its effectiveness. We carry out empir-
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Figure 1. Results on first Synthetic data with disjoint
groups. Left: RMSE with DG-MTL (Kang et al., 2011)
vs. number of groups (G), Right: RMSE with GO-MTL
vs. number of latent tasks (k)

ical comparisons with following two competing sub-
space regularized multi-task learning approaches:

• No-group MTL (Argyriou et al., 2008a): All
tasks are assumed to be related, and the task pa-
rameters are assumed to lie in a low dimensional
subspace. This is done by penalizing the nuclear
norm of weight matrix.

• Disjoint-Group MTL (DG-
MTL) (Kang et al., 2011): A recently proposed
approach that assumes multiple disjoint groups
of tasks. Task parameters within a group lie in a
low dimensional space.

In addition, we also compare with baseline single task
learning (STL), in which tasks are learned indepen-
dently. Below, we report results on two synthetic and
four real-world datasets. The regularization parame-
ter λ in Eq. 1 is kept fixed at 0.1 in all experiments.
We expect λ to depend on the dimensionality of the
space and number of examples. Incidentally, all the
real-world datasets used in this work have dimension-
ality less than 100, for which λ = 0.1 seemed to work
well. Of course, it can always be selected using cross-
validation. We generate four different random splits
(70% train, 30% validation) on the training set for
cross-validation of parameter µ. The search grid was
taken to be [0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4].
Averaged performance for different splits is reported.

4.1. Synthetic data

We use two synthetic datasets to study our approach.
First, we use the synthetic data used in (Kang et al.,
2011).1 This data consists of 20-dimensional feature
vectors, three groups of tasks, 15 training points and
50 test points per task. There are 10 tasks in each
group whose parameter vectors are identical to each
other up to a scaling factor. These parameters are used

1This data along with the source code was
taken from author’s website: http://www-
scf.usc.edu/ zkang/GoupMTLCode.zip
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Figure 2. Results on second Synthetic data with overlap-
ping groups. Left: RMSE with DG-MTL vs. number of
groups (G), Right: RMSE with GO-MTL vs. number of
latent tasks (k)

in the model of linear regression to generate training
data. The task groups in this data are disjoint.

We generate a second synthetic dataset to simulate
overlap in groups. We retain the previous setting of 3
groups and 10 tasks in each group, but now we allow
the groups to overlap in one basis. We generate param-
eter vectors for 4 latent tasks in 20 dimensions, with
each entry drawn i.i.d. from a zero mean and unit
variance normal distribution. This is essentially the
matrix L in our formulation. We generate the first 10
tasks by linearly combining only first two latent tasks.
The coefficients of linear combination are drawn i.i.d.
from a normal distribution centered at zero with unit
variance. In a similar manner, we generate the next
10 tasks by linearly combining second and third latent
tasks. Last 10 task parameters are generated by linear
combination of the last two latent tasks. The matrix S
in our formulation that contains the coefficients of lin-
ear combination, has precisely two non-zero entries in
each column for this generative model. We randomly
generate 15 training and 50 test points per task, and
task parameters are used to generate their real valued
labels using a linear regression model. Random Gaus-
sian noise with zero mean and 0.5 standard deviation
is added to the labels.

The plot of root mean square error (RMSE) with
changing k is shown in Fig. 1 and Fig. 2. We also
show the RMSE plot with changing value of pa-
rameter G (the number of groups) in the approach
of (Kang et al., 2011). GO-MTL converges to almost
same RMSE for all values of k ≥ 3 for first synthetic
data and k ≥ 4 for the second synthetic data. The
performance of (Kang et al., 2011) is more sensitive
to the number of groups parameter (G) and starts
deteriorating when it is increased or decreased from
the true value. The proposed approach outperforms
disjoint-group MTL by a significant margin, more so
on the second dataset that has overlap in groups. Ta-
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Figure 3. Recovered sparsity patterns (the matrix S) with
GO-MTL for the first Synthetic data with 3 disjoint groups
(darker color indicates higher absolute value of the coeffi-
cient). Along horizontal and vertical axes are the observed
tasks and the latent tasks, respectively. Top: For k = 3,
Middle: For k = 10 after three iterations, Bottom: For
k = 10 after convergence (15 iterations). Even for large
value of k, we are able to recover the true support which
is given by three latent tasks.

ble 1 shows the exact RMSE values obtained for these
datasets.

The sparsity patterns recovered by GO-MTL for these
two data are shown in Fig. 3 and Fig. 4. We are able
to recover the grouping and overlap structure for most
of the tasks in both cases. For the second synthetic
data (Fig. 4), support of first 10 and last 10 tasks
is recovered more precisely than the support of the
middle group, where a few tasks (for example, 11th,
15th and 16th task) have non-negligible coefficients not
belonging to the true support. The recovery of support
was found to be robust to the value of k chosen in the
algorithm, as is shown in the figures. We are able to
recover the support with same precision for values of
k ≥ 3 for the first data and values of k ≥ 4 for the
second data.

4.2. Real datasets

We evaluate the proposed approach on the follow-
ing four real-world datasets, two of which are regres-
sion tasks and the other two are classification tasks.
We treat multi-way classification as multi-task learn-
ing problem where each task is the classification of
one class from all other classes. To be fair in our
comparisons, we evaluate on datasets that are used
in (Argyriou et al., 2008a; Kang et al., 2011).
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Synth. (1) Synth. (2) Computer School MNIST USPS

STL 1.04 1.36 2.70 (0.10) 10.67 (0.20) 14.8 (0.34) 9.0 (0.4)

No-group MTL 0.48 0.79 2.06 (0.07) 10.18 (0.15) 14.4 (0.28) 7.8 (0.2)

DG-MTL 0.42 0.80 2.01 (0.10) 10.18 (0.20) 14.0 (0.30) 7.8 (0.2)

GO-MTL 0.35 0.64 1.76 (0.09) 10.04 (0.24) 13.4 (0.30) 7.2 (0.2)

Table 1. Results on different datasets: Reported numbers are root mean square error (RMSE) for regression datasets
and multi-class classification errors for MNIST and USPS. Numbers in parentheses are std. dev., which were negligible
for synthetic datasets and so are not reported. STL: Single task learning, No-group MTL (Argyriou et al., 2008a),
DG-MTL (Kang et al., 2011), GO-MTL: the proposed method.
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Figure 4. Sparsity patterns (the matrix S) for the second
Synthetic data with three overlapping groups generated by
4 latent tasks. Bottom: True task grouping structure, Top:
Recovered support for k = 5. We can see that fifth latent
basis has all coefficients equal to zero and only first four
latent tasks are active. The first and third groups are re-
covered more faithfully than the second group.

• Computer Survey data: This regression
dataset has been widely in the literature
to evaluate various multi-task learning ap-
proaches (Argyriou et al., 2008a; Agarwal et al.,
2010). The data was collected in a survey of 190
persons who rated their likelihood of purchasing
each of 20 different personal computers. Here,
students correspond to tasks and computers cor-
respond to examples. All computers are rated by
each student on a scale of 0-10, thus giving 20 la-
beled examples per task. Each computer is repre-
sented by 13 different features (RAM, cache-size,
hard-disk, CPU speed, etc.). We added one more
feature of constant 1 in all examples to account for
the bias term in the regression. Training and test
set are obtained by splitting the datasets 75%-
25%, thus giving 15 examples for training and 5
examples for test.

• School data: This regression data has been
used in previous works in multi-task learn-
ing (Argyriou et al., 2008a; Agarwal et al., 2010;
Bakker & Heskes, 2003). This dataset is from
Inner London Education Authority and consists
of examination scores of 15362 students from
139 schools in London. Here, each school corre-

sponds to a task, thus giving a total of 139 tasks.
The input consists of the year of examination,
4 school-specific attributes and 3 student-specific
attributes. Following (Argyriou et al., 2008a),
each categorical feature is replaced with binary
features, giving a total of 26 features. We again
add a feature of constant 1 in all examples to ac-
count for the bias term. Training and test set
are obtained by dividing examples of each task
60%-40%. Number of examples in each task are
different; there are about 65 examples per task on
average in training and 45 examples per task for
test.

• USPS Digits data: This is a handwritten digits
dataset (Hull, 1994) with 10 classes.2 The images
are processed using PCA and dimensionality is re-
duced to 87, retaining almost 95% of the variance.

• MNIST Digits data: This is another handwrit-
ten digits dataset (LeCun et al., 1998) with 10
classes.2 The images are preprocessed with PCA
and dimensionality reduced to 64.

For MNIST and USPS datasets, we use the same setup
as in (Kang et al., 2011) where 1000, 500 and 500 sam-
ples are used for training, validation and test respec-
tively. The results are summarized in Table 1. All
multi-task learning approaches are able to outperform
single task learning, however on School data, the im-
provement is not statistically significant. The pro-
posed method is able to outperform both no-group
MTL and disjoint-group MTL.

5. Conclusion

We proposed a novel framework for learning grouping
and overlap structure in multi-task learning, where pa-
rameters of each task group are assumed to lie in a
low dimensional subspace. Our approach does not as-
sume disjoint grouping structure, and tasks belonging
to different groups are allowed to overlap with each
other through sharing of one or more latent basis tasks.
This is a more realistic assumption since we can have

2We thank the authors of (Kang et al., 2011) for pro-
viding us the data used in their paper.
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tasks in our pool that are not related enough to be in
the same group, but still share some information that
can be exploited for better learning. We validated our
model on two synthetic and four real datasets, and
obtained considerable gains compared to other com-
peting approaches for subspace regularized multi-task
learning that either do not take grouping structure into
account, or assume that tasks in different groups do
not interact at all. For future work, we would like
to extend the proposed model to learn other types of
structured interaction patterns among the tasks, e.g.,
hierarchies of tasks.
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