
Scalable Exemplar Clustering and Facility Location via
Augmented Block Coordinate Descent with Column Generation

Ian E.H. Yen Dmitry Malioutov Abhishek Kumar
Computer Science Department
University of Texas at Austin

IBM Research IBM Research

Abstract

In recent years exemplar clustering has be-
come a popular tool for applications in docu-
ment and video summarization, active learn-
ing, and clustering with general similarity,
where cluster centroids are required to be a
subset of the data samples rather than their
linear combinations. The problem is also
well-known as facility location in the opera-
tions research literature. While the problem
has well-developed convex relaxation with
approximation and recovery guarantees, its
number of variables grows quadratically with
the number of samples. Therefore, state-of-
the-art methods can hardly handle more than
104 samples (i.e. 108 variables). In this work,
we propose an Augmented-Lagrangian with
Block Coordinate Descent (AL-BCD) algo-
rithm that utilizes problem structure to ob-
tain closed-form solution for each block sub-
problem, and exploits low-rank representa-
tion of the dissimilarity matrix to search ac-
tive columns without computing the entire
matrix. Experiments show our approach to
be orders of magnitude faster than existing
approaches and can handle problems of up to
106 samples. We also demonstrate success-
ful applications of the algorithm on world-
scale facility location, document summariza-
tion and active learning.

1 Introduction

Exemplar clustering is a popular unsupervised learn-
ing approach, which, unlike traditional clustering,
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guarantees the cluster centroids to be samples from
the data set [15, 25, 35]. This requirement is impor-
tant in a variety of applications where it may not make
sense to take linear combinations of the data-points,
such as images, news articles, or chemical compounds.
Furthermore, it also applies to situations where the
set of objects is characterized by a set of pairwise non-
Euclidean distances (for example string edit-distances,
or transportation distances) and hence computing av-
erages, a central step in algorithms such as k-means,
is not well defined. Furthermore, exemplar clustering
also allows one to specify a weight or a cost associated
with each exemplar so as to balance the individual
costs of the exemplars versus the quality of the clus-
tering. Some of the applications where such weights
are required include active learning for image and doc-
ument classification [7], document summarization [14],
and facility location in the Operations Research litera-
ture [3]. For example, in the context of active learning
the exemplars represent a new subset of data-points
to be labeled, so they are chosen to balance the ex-
pected information gain versus their coverage of the
other unlabeled examples.

A direct formulation of exemplar clustering leads to
the combinatorial k-medoid problem, which is NP-
Hard. Thus different approximation schemes have
been proposed for the problem. Partitioning Around
Medoids (PAM) is a popular local-search method [13],
which however typically requires a large number of
random restarts to provide competitive solutions. A
message-passing scheme based on a variant of loopy
belief propagation has also been proposed to solve the
problem [8] which however does no guarantee conver-
gence. The maximization version of the problem can
be cast as a submodular maximization problem, where
a greedy algorithm can achieve 1 − 1/e approxima-
tion guarantee [2, 23], while the current tightest ap-
proximation guarantees for the problem are achieved
by the convex (Linear Program) relaxation approach
[1, 18, 19], which can even find exact solutions if the
data satisfy certain clustering condition [25, 35].
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A significant challenge in scaling the existing exemplar
clustering approaches to larger data-sets has been in
the need to specify a pairwise distance matrix, which
already requires O(N2) storage with N data-points.
Current state-of-the-art approaches to exemplar clus-
tering and facility location can hardly scale beyond
data-sets of size 10, 000, especially for the convex ap-
proach, where a Linear Program with N2 variables is
extremely hard to solve [3, 9, 35].

In this paper, we propose a new convex optimization
algorithm for the convex relaxation approach based
on Augmented-Lagrangian method with column-wise
block coordinate descent (AL-BCD) that, by utilizing
the column-separable structure of group norm and the
row-separable structure of simplex constraint, obtains
closed-form solution for each column sub-problem.
Furthermore, we develop a greedy column generation
procedure based on the low-rank (or sparse) decom-
position of the dissimilarity matrices, which can find
active columns without computing the entire matrix
and thus reduce the complexity per iteration from
quadratic to linear w.r.t. the number of samples. Ex-
periments show our approach to be orders of magni-
tude faster than existing approaches and can handle
problems with more than 105 samples. We demon-
strate our approach on a World-scale facility location
problem with over 1 million nodes, an active learning
experiment in document classification, and apply the
technique for document summarization.

2 Problem Setup

Exemplar clustering aims to find a small number of
representatives that summarizes the entire data set in
the sense that each sample has high similarity to the
representative of its cluster. In a k-medoid formula-
tion, given a data set {xi}Ni=1, the problem can be
expressed as the following optimization problem

min
zi∈{1,..,K},µk∈E

N∑
i=1

D(xi,µzi), (1)

where D(., .) is a dissimilarity function and E denotes
the set of candidate representatives, which usually is
the same as the set of data points E = {µ}Mj=1, but
can be also explicitly given in cases such as facility
location. The problem (1) has convex relaxation with
well-developed clustering-recovery guarantees [6, 25,
35] and rounding guarantees [18, 19]. The relaxation is
defined on an assignment matrix W ∈ [0, 1]N,M , where
Wij denotes whether i-th data sample is assigned to
the exemplar j, and a cluster is implied by the samples
assigned the same exemplar. Therefore, any non-zero
columns of W will imply a cluster and the `∞-group
norm ‖W‖∞,1 =

∑
j∈[M ] maxi∈[N ] |Wij | is a convex

relaxation of the number of non-zeros columns. The
Exemplar Clustering problem then can be expressed
as

min
W∈[0,1]N×M

F (W ) = tr(DTW )

s.t. W1M = 1N , ‖W‖∞,1 ≤ K.
(2)

where D denotes N ×M dissimilarity matrix, and 1n
denotes an n × 1 vector of all ones. In case the num-
ber of clusters K is not known a-priori, one can solve
another formulation

min
W∈[0,1]N×M

F (W ) = tr(DTW ) + λ‖W‖∞,1

s.t. W1M = 1N ,
(3)

which is equivalent to (2) in the sense that for any
K there is a λ(K) s.t. (3) and (2) have the same
optimal solutions. The convex relaxation (3), as shown
in [25, 35], exactly recover the solution of (1) if there
exists clustering with good separation. Furthermore,
(3) is of the same form to the facility location problem
[3], where one can employ a rounding procedure to find
approximate solution with 1.488 approximation ratio
to the optimal integer solution [18]. In this paper, we
will focus on formulation (3) to address both large-
scale exemplar clustering and facility location.

However, in current practice, algorithms for exem-
plar clustering require construction and repeated ac-
cess to the N ×M dissimilarity matrix D, which, for
N,M > 105, may not even fit into memory, and re-
quires O(MNd) construction time, where d is the time
required to compute one pair of dissimilarity.

In the next section, we show how to overcome this is-
sue via a low-rank or sparse decomposition of D, and in
section 4, we propose an algorithm that can explicitly
utilize such decomposition to avoid computing matrix
D and thus avoid the quadratic complexity w.r.t. num-
ber of samples.

3 Exact & Approximate Dissimilarity
Matrix Decomposition

In many applications, the dissimilarity matrix D has a
tractable representation, for example it can be exactly
or approximately factorized into a product of low-rank
or sparse matrices. We now discuss some special cases.

3.1 Exact Dissimilarity Decomposition for
Bregman Divergence

Bregman Divergence is a family of dissimilarity mea-
sures that includes several popular measures such
as square Euclidean Distance, KL-divergence, Square
Mahalanobis distance, and Itakura-Saito distance.
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Given a function f(x) : Rd → R, the Bregman Di-
vergence between sample xi and an exemplar µj is
defined as

D(xi,µj) = f(xi)− f(µj)− 〈∇f(µj),xi − µj〉, (4)

where the first term is related only to i, the second
term is related only to j, and the only term involv-
ing both i and j is the d-dimensional inner product
−〈∇f(µj),xi〉. Therefore, let X be the N × d data

matrix with Xi,: = xTi . The dissimilarity matrix can
be decomposed as

D = fx1
T
M + 1Nf

T
µ −XFT . (5)

where fx is N by 1 with fxi = f(xi), fµ is M by
1 with fµi = 〈∇f(µj), µj〉 − f(µi), and F is M by

d matrix with j-th row being ∇f(µj)
T . Therefore,

the dissimilarity matrix formed by Bregman Diver-
gence between d-dimensional objects has decomposi-
tion (5) with rank d + 2. The matrix-vector product
operation on the dissimilarity matrix can be thus com-
puted in O(Nd+Md) time, which is much smaller than
O(MN). Note in some applications such as Natural
Language Processing, dimension d can be quite large,
but data matrixX and F are very sparse, in which case
the time for matrix-vector product can be bounded by
O(nnz(X) + nnz(F )) � O(Md+Nd).

3.2 Approximate Dissimilarity Matrix
Decomposition

For a general dissimilarity (similarity) measure, there
is no exact low-rank representation of D, but we can
find an approximate one via general techniques for
any dissimilarity or similarity measure such as An-
chor Graph Approximation [21] or Nystrom Method
[17], which can be constructed with cost O(Nmr+r3),
where m is number of anchors chosen and r is the rank
for approximation. In some cases such as Facility Lo-
cation, it is known that D can be approximated well by
a low-rank matrix since the Euclidean Distance matrix
is computed from a 2-dimensional space, for which we
can use Matrix Completion [12, 27] to compute a low-
rank representation from sampled pairwise distances.

No matter which approximation method we use, it
leads to a decomposition of the form

D = UV T , (6)

where U , V are of size N×r and M×r. Then one can
compute matrix-vector product in time O(Nr +Mr).

The following theorem shows that as long as the ap-
proximation is accurate enough, one can bound the
sub-optimality of the solution obtained from the low-
rank dissimilarity matrix. Proofs are in the appendix.

Theorem 1. Suppose the low-rank approximation D̂
has ‖D̂ − D‖1,∞ ≤ ε, where ‖A‖1,∞ =

∑
i maxj |Aij |.

Then we have

tr(DT Ŵ ) ≤ tr(DTW ∗) + 2ε, (7)

where Ŵ , W ∗ are solutions to (2) with dissimilarity

matrix D̂ and D respectively.

Theorem 2. Suppose the low-rank approximation D̂
has ‖D̂ − D‖1,∞ ≤ ε, where ‖A‖1,∞ =

∑
i maxj |Aij |.

Then we have

F (Ŵ ) ≤ F (W ∗) + 2ε, (8)

where F (.) denotes the objective function in (3), Ŵ ,

W ∗ are solutions to (3) with dissimilarity matrix D̂
and D respectively.

In addition, if the optimal clustering is strong enough,
one can recover the optimal solution even using a low-
rank approximation.

Corollary 1. Suppose the optimal solution W ∗ of (2)
(or (3)) is strong in the sense that

F (W )− F (W ∗) ≥ δ

for any corner point W 6= W ∗ of (2). Then if

‖D̂ − D‖1,∞ < δ, the solution Ŵ of (2) (or (3)) with

dissimilarity matrix D̂ has Ŵ = W ∗, where W ∗ is the
solution of (2) (or (3)) with exact matrix D.

4 Optimization Algorithm

The low-rank (or sparse) representation introduced in
section 3, unfortunately, cannot directly reduce the
computational cost for most of the existing optimiza-
tion methods. In particular, existing optimization ap-
proaches [3, 6, 8, 16, 35, 36] require access to every en-
try of the dissimilarity matrix, and thus they still need
O(MNr) time to construct the matrix. In this section,
we show that by combining Augmented-Lagrangian
with Block Coordinate Descent (AL-BCD), one can
utilize problem structure to obtain a closed-form so-
lution for each column sub-problem, and exploit the
decomposition of dissimilarity matrices to do column
generation without computing the entire matrix.

4.1 Augmented Lagrangian with Block
Coordinate Descent (AL-BCD)

The convex optimization problem (3) has special struc-
ture where the simplex constraints are row-separable
while the group norm ‖W‖∞,1 is column-separable.
Therefore, if we introduce dual variables α ∈ RN for
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the simplex constraints and form its Augmented La-
grangian

L(W ;α) =tr(DTW ) + λ‖W‖∞,1

+αT (W1− 1) +
ρ

2
‖W1− 1‖2,

(9)

with some parameter ρ, the sub-problem (9) will have
diagonal Hessian sub-matrix for each column of vari-
ables, which means we will have closed-form solution if
we minimize (9) w.r.t. only one column W:,j . In par-
ticular, the Augmented Lagrangian method alternates
between minimizing the Augmented Lagrangian (AL)

W t+1 = argmin
W≥0

L(W,αt) (10)

and updating the dual variables

αt+1 = η(W1− 1) +αt (11)

where η is a step size parameter. The AL sub-problem
(10) is of the form:

L(W ;α) = f(W ) + h(W ), (12)

where h(W ) = λ‖W‖∞,1 is the non-smooth part, and
f(W ) is the smooth part containing remaining terms.
Since h(W ) is column separable, we can solve (12) via
a column-wise Block Coordinate Descent, which opti-
mizes a column of W at a time. Minimizing (12) w.r.t.
j-th column results in the following subproblem

min
dj

hj(W:,j + dj) +∇jf(W )Tdj +
1

2
dTj ∇2

jjf(W )dj

s.t. Wij + dij ≥ 0
(13)

where hj(W:,j) = ‖W:,j‖∞,

∇jf(W ) = D:,j + ρr (14)

∇2
jjf(W ) = ρI, (15)

and

r = W1− 1 +αt/ρ. (16)

Since (13) is minimization of a quadratic function of
diagonal Hessian matrix, we can derive its closed-form
solution as

d∗j = proxhj/ρ

([
W:,j −

∇jf(W )

ρ

]
+

)
−W:,j , (17)

where proxhj/ρ(.) is the proximal operator of the infin-

ity vector norm λ
ρ‖W:,j‖∞. For a non-negative vector

v, assuming v is sorted such that v1 ≥ v2... ≥ vN , the
proximal operation can be computed as

Wij + d∗ij =

{
1
m∗

[
(
∑m∗

i=1 vi)−
λ
ρ

]
+
, i ≤ m∗

vi, i > m∗.
(18)

Algorithm 1 Randomized AL-BCD

1. Initialize α0 = 0, W 0 = 0.
for t = 1, ..., T (outer iteration) do
for s = 1, ...,M do

2.1.1. Draw j ∈ [M ] uniformly at random.
2.1.2. Update j-th column of W via (17).

end for
2.2. Update αt by (11).

end for

Algorithm 2 AL-BCD with Column Generation

1. Initialize α0 = 0, W 0 = 0, A(t) = ∅.
for t = 1, ..., T (outer iteration) do

2.1. Generate a set of greedy columns SL based
on criteria (24).
2.2. Add SL to active column set A(t).
2.3. Solve (10) w.r.t. columns j ∈ A(t).

2.4. Remove {j |W (t)
:,j = 0} from A(t).

2.5. Update αt by (11).
end for

where m∗ = argmaxm
1
m [(

∑m
i=1 vi)− λ/ρ] [20].

This results in the first version of AL-BCD, summa-
rized in Algorithm 1, which alternates between the
update of dual variables and the minimization of AL
function (10) via Randomized (columnwise) Block Co-
ordinate Descent. Note that instead of solving the AL
subproblem (10) exactly, Algorithm 1 performs only
M block minimization steps before each update of dual
variables (11), which as we show in section 5, suffices
for achieving fast convergence to global optimum given
a sufficiently small dual step size η.

4.2 Greedy Column Generation

The Randomized AL-BCD (Algorithm 1), without
knowledge of which columns are active, needs to up-
date all M columns, and thus requires O(MN) time
for each outer iteration. In this section, we show how
to utilize the decomposition in section 3 to efficiently
find active columns and reduce the O(MN) complex-
ity.

Based on (18), we know, for a currently inactive col-

umn j with W
(t,s)
:,j = 0, the columnwise minimization

(13) results in d∗j 6= 0 if and only if

N∑
i=1

[−∇ijf(W )]+ > λ. (19)

Therefore, we can use

sj =

N∑
i=1

[−∇ijf(W )]+ (20)
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as criteria to select columns most likely to become non-
zeros. Denote s ∈ RM as an M -dimensional vector
recording scores (20) of the M columns. Computing
s directly is expensive and requires O(MNr) cost and
O(MN) memory. In the following, we propose a ran-
domized greedy oracle that returns good columns with
significant probability. Firstly, without the [.]+ oper-
ator in (20), one can efficiently compute s by matrix-
vector product

s = (−∇f(W ))T1

= (−ρr1T − D)T1 = −ρ1(rT1)− V (UT1),
(21)

which requires only cost O(Mr + Nr) where r is the
rank of D. However, things become complicated when
taking [.]+ operation into account. First, the score for
each column (20) can be written as

sj = (−∇jf(W ))Tqj (22)

where qj is a vector determined by the signs of
−∇jf(W ), defined as

qji =

{
0 ,−∇ijf(W ) ≤ 0
1 ,−∇ijf(W ) > 0

(23)

The computation of (20) is harder than (21) in the
sense that qj is different for each column. Therefore,
one cannot compute the whole vector s via a single
matrix-vector product operation as in (21).

However, instead of requiring an exact oracle that
finds a column with maximum score, we can employ
a less expensive oracle that returns columns of higher
score with higher probability. This can be achieved by
uniformly sampling R vectors {q̃r}r∈[R] from the set
{qj}Mj=1 and compute the approximate score s̃j as

s̃j = max
r∈[R]

(−∇jf(W ))T q̃r. (24)

Note that we take maximum in (24) because, for any
vector q̃ with elements q̃i ∈ {0, 1}, we have

(−∇jf(W ))T q̃ ≤ (−∇jf(W ))Tqj = sj .

Therefore the approximate score (24) is always an un-
derestimate of the true score. By taking maximum
(24), we are getting better estimate as R increases. In
the next section, we will show that the approximate
column-generation method actually leads to fast con-
vergence to global optimum with a rate determined by
R. In our experiments, setting R = 10 results in fast
enough convergence empirically.

We summarize the AL-BCD with Column Generation
in Algorithm 2. Note each iteration of Algorithm 2
performs only one step of column generation before
each update of dual variables. As a technical contri-
bution of this paper, we show in next section that such
inexact minimization suffices for fast convergence.

5 Convergence Analysis

In this section, we analyze convergence of our Algo-
rithm 1 and 2. Note existing analysis of Augmented
Lagrangian Method (ALM) either requires solving
each AL subproblem (10) to certain precision, result-
ing in a double-loop algorithm [28, 29, 30], or requires
minimizing the function w.r.t. all blocks of variables
in each iteration as in Alternating Direction Method
of Multiplier (ADMM) [11]. As one technical contri-
bution of this work, our analysis shows that a single-
loop ALM with one step of (approximate) greedy block
minimization per iteration suffices for global linear
convergence.

Note that the AL sub-problem (10) does not satisfy
strong convexity as usually required for proving linear
convergence. However, it has strong convexity when
restricted to a constant subspace. This restricted ver-
sion of strong convexity has been exploited recently for
proving linear-type of convergence [31, 33]. Utilizing
such structure, we are able to show that both Ran-
domized and Greedy BCD on the AL subproblem (10)
have geometrically fast convergence as in the following
theorems.

Theorem 3 (Linear Convergence of Randomized
BCD). The iterate {xs}∞s=1 produced by inner loop of
Algorithm 1 has

E[f(W s+1)]− f∗ ≤
(

1− 1

Mγ

)
(f(W s)− f∗) .

where f∗ is the optimum of (10),

γ = max
{

16ρθ(f0 − f∗) , 2θ(1 + 4L2
g) , 6

}
,

Lg is local Lipschitz-continuous constant of augmented
term, and θ is Hoffman constant of the optimal (poly-
hedral) solution set.

Theorem 4 (Linear Convergence of Approximate
Greedy BCD). Let {xs}∞s=1 denote iterates produced
by Algorithm 2 (without step 2.5) with a fixed α. Then

E[f(W s+1)]− f∗ ≤
(

1− 1

mγ2

)
(f(W s)− f∗) ,

where m = M/R,

γ2 = max
{

16ρθ1(f0 − f∗) , 2θ1(1 + 4L2
g) , 6

}
,

and θ1 is the `2,1-norm version of Hoffman constant
satisfying θ ≤ θ1 ≤Mθ.

Then we further show that, for a small enough con-
stant step size η, Algorithm 1 and 2 have linear conver-
gence to the optimum. Let d(α) = minW≥0 L(W,α)
be the augmented dual objective of (3), d∗ :=
maxα d(α) be the optimal dual objective and let
∆t
d := d∗ − d(αt), ∆t

p := L(W t+1,αt) − d(αt) be the
dual and primal suboptimality respectively.
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Theorem 5 (Linear Convergence of Randomized AL-
BCD). The iterates {(W t,αt)}∞t=1 produced by Algo-
rithm 1 has

∆t
d + ∆t

p ≤
1

1 + min( 1
2Mγ ,

η
τ )

(
∆t−1
d + ∆t−1

p

)
,

for any 0 < η ≤ ρ/4Mγ, where τ > 0 is a constant
depending on the geometry of optimal solution set.

Theorem 6 (Linear Convergence of Greedy ALBCD).
The iterates {(W t,αt)}∞t=1 produced by Algorithm 2
has

∆t
d + ∆t

p ≤
1

1 + min( 1
2mγ2

, ητ )

(
∆t−1
d + ∆t−1

p

)
,

for any 0 < η ≤ ρ/4mγ2.

6 Experiments

6.1 Scalable Exemplar Clustering

In this section, we compare the proposed AL-BCD ap-
proaches to existing methods for convex exemplar clus-
tering (3) with normalized square Euclidean distance,
which is a special case of the Bregman Divergence (4).
In particular, the methods in comparison are listed
below.

• ADMM: The Alternating Direction Method of
Multiplier (ADMM) solver proposed in [6, 35].

• LP-I: The Interior-Point-Method (IPM) Linear
Programming (LP) solver in Matlab.

• LP-A: The Augmented-Lagrangian Coordinate
Descent (AL-CD) LP solver recently proposed in
[36], which demonstrated better efficiency com-
pared to IPM and Primal, Dual Simplex methods
implemented in state-of-the-art commercial solver
CPLEX on large-scale problems.1

• ALRCD: The proposed Augmented Lagrangian
Method with randomized Block Coordinate De-
scent (Algorithm 1).

• ALGCD: The proposed AL-BCD method with
Greedy Column Generation (Algorithm 2).

Note that we did not compare with Subgradient-based
LP solver [3] since they can hardly obtain solution of
reasonable precision to be compared with other meth-
ods. Note also that message-passing algorithms such
as Affinity-Propagation (AP) and Max-Product Linear

1The solver can be downloaded at: http://www.cs.
utexas.edu/~ianyen/LPsparse.

Programming (MPLP) are also excluded from com-
parison since they do not guarantee convergence to
optimum of the convex program, and they also require
construction of MN dissimilarity matrix and thus can
only be used in small-scale problems [8, 16].

The timing results are shown in Table 1, where we di-
vide the table into 4 blocks from top to bottom. The
first 3 blocks are data with increasing number of sam-
ples N (= M) and the 4th block is data with nonlin-
ear random features. The timing result is marked with
”n/a” if the time required is more than 8 hours or the
memory required is more than 100GB.

On small-size data set, it is clear that LP-I is the
slowest and even for data with N ≈ 500 it takes 6
hours to run. On the other hand, we observe that
LP-A is an order of magnitude faster than ADMM,
and ALBCD is another order of magnitude faster than
LP-A on medium-scale data. Note this is expected
since both LP-A and ALRCD performs (block) coor-
dinate descent on the Augmented Lagrangian prob-
lem, but ALRCD has closed-form solution for each
column, which makes it converge much faster than
LP-A. On large-scale data sets, both ADMM and LP-
A become infeasible and even storing the dissimilar-
ity matrix requires tens of gigabytes. In this sce-
nario, the column-generation-based solver ALGCD is
the only efficient solver and is another order of magni-
tude faster than pure ALRCD. The last 3 data sets in
Table 1 demonstrate the usage of our proposed method
together with a Random-Feature Kernel Approxima-
tion method [26, 34] to perform exemplar clustering
with (RBF-Laplacian) Kernelized Square Euclidean
Distance, where using the Random Binning Feature
proposed in [26], we obtain a decomposition of dissim-
ilarity matrix D = UV T of U , V that are sparse but
not low-rank.

In Table 2, 3, we test scalability of different meth-
ods on subsamples of Covtype data set with increasing
number of samples, where we can observe that, for LP
and ALRCD, the time and space required to solve (3)
grows quadratically with N , while ALGCD has run-
ning time growing only slightly superlinear to N and
memory consumption growing linear to N (due to a
fixed-size cache of columns).

6.2 Facility Location

In this section, we demonstrate the usage of our pro-
posed method on the Facility Location problem. We
use the World TSP data set which contains the lati-
tude and longitude of 1,904,711 cities 2in the world to
model the location of demands (customers) and ser-
vices (facilities). In particular, we randomly sampled
N = 1, 000, 000 cities as demand locations and the re-

http://www.cs.utexas.edu/~ianyen/LPsparse
http://www.cs.utexas.edu/~ianyen/LPsparse
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Table 1: Timing results of Convex Exemplar Clustering solvers with normalized square Euclidean distance, where
davg is the average number of non-zero features per sample, K is the number of clusters obtained from solving
(3) with λ ∈ [0.01N, 0.1N ] chosen to induce integer solution (if any between the range). A ”∗” mark on ”K”
means the solution is integer (and thus is optimal to the combinatorial problem (1)).

Data N (M) d davg Size(D) K ADMM LP-I LP-A ALRCD ALGCD

Iris 150 4 4 0.42MB 11 11.23s 1m40s 0.43s 0.34s 0.105s
Wine 178 13 13 0.58MB 16 5.12s 4m34s 0.68s 0.37s 0.052s
Glass 214 9 9 0.87MB 6∗ 2m7s 8m39s 1.20s 0.41s 0.079s
Vowel 528 10 10 5MB 25 4m32s 6h14m 24.6s 10.29s 2.24s
Scene 1211 294 294 28MB 2∗ 2h27m n/a 2m4s 5.64s 7.06s

Satimage 4435 36 36 355MB 7∗ n/a n/a 6h29m 3m3s 17.5s
Sector 6412 55197 163 738M 6∗ n/a n/a n/a 15m2s 1m36s

Pendigit 7494 16 16 1.1GB 7∗ n/a n/a n/a 5m51s 2.55s
RCV1 20242 47236 74 6.6GB 9 n/a n/a n/a 5h21m 1m44s

CodRNA 59535 8 8 53GB 7∗ n/a n/a n/a 7h32m 1m41s
Covtype 581012 54 11.94 >100G 7∗ n/a n/a n/a n/a 35m58s

PendigitRF 7494 12891 100 1.1GB 12 n/a n/a n/a 6m35s 36.5s
CodRNARF 59535 7611 50 53GB 5 n/a n/a n/a 1h46m 1m4s
CovtypeRF 581012 54509 50 >100G 11 n/a n/a n/a n/a 44m38s

Data size K LP-A ALRCD ALGCD

N = 5 × 103 13 7h11s 3m34s 2.7s
N = 5 × 104 14 n/a 6h36m 1m53s
N = 5 × 105 14 n/a n/a 28m14s

Table 2: Timing results on Covtype data set (d = 55,
M = N , λ = 0.01N).

Data size K LP-A ALRCD ALGCD

N = 5 × 103 13 5.4GB 0.2GB 23MB
N = 5 × 104 14 n/a 19GB 220MB
N = 5 × 105 14 n/a n/a 2.1GB

Table 3: Memory consumption on Covtype data set
(d = 55, M = N , λ = 0.01N), where ALGCD
(with low-rank column generation) uses a LRU cache
of size=500 columns.

maining M = 904, 711 cities as potential positions for
building facilities. We then use Geographical distance
(computed via polar coordinate flat-Earth formula) to
measure the distance between customer and potential
facility. To obtain a low-rank approximation to N by
M distance matrix D, we sampled 100N pairs of dis-
tance and use Matrix Completion 3to find UV T ≈ D.
Using rank r = 40, we obtain a decomposition UV T

with testing RMSE < 10−3.

Table 4 compares results obtained from (i) ALBCD
running with 10% sub-sampled columns, (ii) ALBCD
using exact matrix D of Geographical distance, and
(iii) ALBCD-CG using low-rank approximation D =

3The data set can be downloaded at http://www.math.
uwaterloo.ca/tsp/world/.

3We use Matrix Completion solver provided by the au-
thors of [37].

Data size ALRCD(sub) ALRCD ALGCD

N = 104 1h11m 1h54m 1m20s
M = 104 obj=3,630 3,550 3,567
N = 106 n/a n/a 1h58m
M ≈ 106 n/a n/a obj=342,273

Table 4: Facility Location on 1,904,711 cities over the
worlds (λ = 0.005N).

UV T from matrix completion with r = 40.

In the table, only ALBCD exactly solves problem (3),
while the other two only solve it approximately. How-
ever, the approximation made by ALBCD-CG based
on approximate low-rank decomposition gets much
lower objective than that from column-subsampling
approach. On the other hand, the time required by
ALBCD-CG is much less than the others. Finally, on
full data set with N = 106 (1012 #variables), ALBCD-
CG is the only feasible way to solve (3), which takes
about 2 hours—a time increase almost linear to N .

6.3 Active learning via Exemplar clustering

In supervised classification, one often has access to a
large amount of unlabeled data, and a significant ef-
fort is needed to provide labels for the data (hiring
annotators, domain experts, or crowd-sourcing via the
mechanical turk). The goal of active learning is to ju-
diciously select a small subset of examples to label in
order to maximize the improvement in classification
accuracy over unseen test samples.

Many popular active learning approaches make use of
classifier uncertainty scores of the unlabeled samples
to select a subset for labeling. The uncertainty score

http://www.math.uwaterloo.ca/tsp/world/
http://www.math.uwaterloo.ca/tsp/world/
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represents the lack of confidence that the classifier has
in its top class, and serves as a proxy for expected im-
provement in classification accuracy by labeling this
example. Studies have also shown that encouraging
diversity in the actively selected batch of samples can
further help in improving the classifier performance
with reduced labeling effort [4, 7, 32]. Exemplar clus-
tering provides a very appealing mechanism to imple-
ment such a scheme for active learning. Uncertainty
scores can be used to modulate the regularization pa-
rameter λ (Eq. 3) such that highly uncertain samples
are penalized less. This has balances the two desirable
properties in the selected batch – diversity and uncer-
tainty. We demonstrate that the proposed ALBCD
approach is highly suitable for medium to large scale
active learning whereas previous approaches tend to
be slower by an order of magnitude [5, 7].

We experiment with Ohio State University Medical
(OHSUMED) text data4 [24] which consists of about
35K medical abstracts from 23 cardiovascular diseases
categories. For simplicity, we operate under a mul-
ticlass classification setting and ignore the abstracts
having more than one label. This leaves us with 18, 302
abstracts which we split in 2:1 ratio for training and
test, respectively. We use cosine distance between the
tf-idf representation of the abstacts as the dissimi-
larity measure, which is a popular distance measure
used for text documents. It also fits well with our ap-
proach, as the tf-idf representations are typically ex-
tremely sparse, thus allowing fast matrix-vector prod-
ucts, without the need to explicitly construct the full
dissimilarity matrix. We use one-vs-rest multiclass
SVM as the classifier.

We compare three approaches for incremental selec-
tion of examples for labeling: random sampling, un-
certainty sampling, uncertainty sampling with diver-
sity. For random sampling and uncertainty sampling,
the initial classifier is trained with a randomly selected
batch of 100 examples. For the third approach that
combines uncertainty sampling with diversity, we use
exemplar clustering to select the initial batch of 100
examples for training the classifier. For all approaches,
we incrementally add labeled examples in the batches
of 200 each until we reach 1500 examples. Figure 1
shows the plots of accuracy on the test set against the
number of training examples for all the approaches.
Active learning approach balancing uncertainty and
diversity indeed improves classification accuracy es-
pecially in the early periods with less labeled exam-
ples. For selecting one batch of 100 exemplars out
of 12, 192 training samples, the proposed ALBCD ap-
proach takes about 5 minutes while the ADMM based
approach [5] takes more than an hour.

4http://disi.unitn.it/moschitti/corpora.htm

Figure 1: Learning curve for OHSUMED dataset.

6.4 Document summarization

Exemplar clustering also provides a simple but sur-
prisingly effective tool for document summarization.
The goal here is to select a short snippet of text that
summarizes the main points made across several doc-
uments, such as news articles. Often the snippets are
selected as a few representative sentences from the doc-
uments. Here we illustrate that convex exemplar clus-
tering based on ALBCD can also be applied to large-
scale document summarization. We note that to de-
fine a distance matrix (dissimilarity matrix) between
the sentences, one can use either the sparse tf-idf rep-
resentation or the low-rank mean-word2vec represen-
tation [22], where each sentence is simply represented
as an average of the word2vec vectors for each of the
words. We illustrate the summaries produced by AL-
BCD from 10 news articles from CNN, Reuters e.t.c.
that describe the recent Russian rocket launches in
Syria in Figure 2. Qualitatively, the 4 chosen sen-
tences are not redundant, and each one carries signif-
icant topical information (as measured by fraction of
topic-specific words). We also illustrate the scalabil-
ity of the approach by applying it to 20, 000 sentences
from the Reuters RCV1 dataset. We have used a 300-
dimensional vector-space representation of each sen-
tence by computing the average word2vec vector over
the words in a sentence. It takes 3 minutes to compute
200 representative exemplars from this collection.

Figure 2: Summary sentences automatically selected
using convex exemplar clustering from 10 news articles
about the russian missile launches in Syria.

http://disi.unitn.it/moschitti/corpora.htm
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